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» C"(P) : all functions F : Q — R, continuously differentiable
of order r, whose restriction to each part of the subdivision P
is a polynomial. F is called an r-spline (or just a spline).

» Degree of a spline: max degree of polynomials it restricts to
on each piece of the subdivision.

» C/(P) : r-splines of degree < d on P

Partition P of an octagonal
domain C R?

Graph of the Zwart-
Powell element: a spline
in C1(P)
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Splines in One Dimension

| = subdivision of a connected interval into subintervals, with e
edges, v vertices, V0 interior vertices

Subdivision with v =5, e=4, v0 =3

Low degree splines are used in Calc 1 to approximate integrals.
C(I) = continuous piecewise quadratic functions:

Simpson’s Rule!
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Who Cares about splines?

Splines are used extensively in:

>

>

v

Aerospace engineering - airfoil design (Boeing)
Computer aided geometric design (CAGD). Ever use bezier
curves on a drawing program? Those are splines!

Approximating solutions to partial differential equations (finite
element method)

pure mathematics (equivariant cohomology)

... the list goes on
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Univariate Piecewise Linear Functions

The PL functions C2(/) in one variable are easy!
PL function determined uniquely by its value on the vertices of
the subdivision (two points determine a line).

CP(1) has the structure of a real vector space: if F, G € CY(/)
then so is aF + bG.
1. aF + bG is piecewise linear - sum of linear functions is linear
2. aF + bG is continuous - sum of continuous functions is

continuous

Basis for CY(/):‘Courant functions' or ‘tent functions’ which are 1
at a chosen vertex and 0 at all others.
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Univariate Courant functions:

This basis gives an isomorphism CP(/) =2 RY = dim CP(/) = v.
Can generalize this dimension formula for all r, d:

. L d+1 d<r
dlmRCd(l)_{ e(d+1)—Vor+1) d>r

There are nice algorithms due to Casteljau and de Boor to
compute bases of C/(/) called B-splines.
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» In R?, restrict to simply-connected domains (no holes - think
solid disk).

Have many more choices for a subdivision

v

v

Maybe the most natural choice: Triangulate!

v

A = triangulation of a disk, with v vertices, e edges, f faces
(triangles), v¥ internal vertices, and e internal edges

A triangulation A with v =8,e =15,f =8,v? =2, and e =9

What kinds of PL functions are there on A?
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Just as in the 1D case, C)(A) is a vector space.
Again, a basis for C{)(A) is given by the ‘Courant functions’ which
are 1 at a chosen vertex and 0 on all other vertices.
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Bivariate Courant functions:

This gives an isomorphism C2(A) 2 RY, so dim C)(A) = v.
This dimension formula extends to higher degrees:

(d+2)(d+1)

> —e(d+1)+ 0

dim CY(A) = f
Plugging in d = 0 gives 1, plugging in d = 1 gives v. (this takes a
little work)

There is no reference to the geometry of Al All that matters is
the number of faces, edges, and vertices.
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Things get complicated

dimg C(P) depends on the geometry of P!

(2.2 (22) (-2
-1.1) (1, -1.1) (1,
~1,-1) 1,- ~1,-1) 1,-
(-2,-2) 2-2) (-2,-2) (2,-2)
dim CO(P1) = 4 dim C)(P,) =3

Let's see why.
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v

A trivial PL function is one which restricts to the same linear
function on each face.
dim(trivial splines on P) = 3 always, with basis 1, x, y.

%

» A nontrivial PL function is one which restricts to at least two
different polynomials on different faces.

There is one nontrivial PL function on P;, whose graph is an
Egyptian pyramid after some evil villain chops off the top:

v

v

y

—X 1 X

-y

When you move to P, you lose this PL function!
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functions that are lost under small perturbations of the vertices
Make it transparent

Now look in one of the faces:

The nontrivial PL function is a ‘deformed cube’
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A more interesting example

Make it transparent

Look into an octagonal face:

We get a nontrivial PL function which is a 'deformed’ version of
the truncated cube
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And now for something completely different

» Framework of bars and joints represented by edges and
vertices of polygonal framework

» Bar in tension or compression exerts force along the bar
equal in magnitude but opposite in direction at endpoints

—

Tension

—
—

e Compression

Note: Arrows represent force, not movement
Between vertices pj, p; (thought of as vectors), represent tension or
compression as a scalar wj;.

» Force is wijj(pj —pi) at pi > wjj <0 = tension

» Force is wjj(pi —pj) at pj > wjj >0 == compression
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Self-Stress

A self-stress on a framework is an assignment of scalars wj; along
the edges e;; satisfying

> wii(pj — pi) = 0.

p; adjacent to p;

In other words, the forces are in static equilibrium at each vertex.
Trivial self-stress is the assignment of 0 along every edge.

(-22) -1 22
4
-1
)
-1 2 2 -1 By the way, what could
) this mean physically?
D -
A
(-2-2) -1 2-2

A nontrivial self-stress on Py
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Maxwell's Observation

Nontrivial stresses are in 1-1 correspondence (almost) with
nontrivial PL functions on P which vanishes along the boundary!

Restrict to faces adjacent
to a single edge e

Take normals
(z-component= 1)

Translate normals to
(4’0) (07 07 _1)

Connect normal tips

4
We = +§ =2
Sign of w. depends on orientation.
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Take normals
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Flipping Orientations

Restrict to faces adjacent
to the edge €’

Take normals

L} (z-component= 1)
I e
(2,2 Translate normals to
G0y 1\ 4.0 (0,0,-1)
4\‘ .
2,-2) Connect normal tips
4
we/ = —— = —1

4
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Summary

» Trivial PL functions (same linear function on every face) «»
trivial stress (0 on all edges)

» Nontrivial piecewise linear functions <> nontrivial stresses

» This correspondence is unique, up to adding trivial PL
functions on the left hand side.

> A framework which only has the trivial stress is called
independent.

P1 is not independent P, is independent

Fact: If the domain is not simply connected, the above
correspondence breaks down!
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Where to now?

We've seen that dim C)(P) can already be quite subtle. What
about higher degrees?

» Algebraically, useful to homogenize the polynomial functions
defining the spline (make all the terms have the same degree
by introducing a third variable)

» Geometrically, replace P by the cone P over P (the third
variable records ‘height’)

~

P1 P1

» CO(P) is graded (every spline can be written as a sum of
splines of uniform degree)

> CS(P) 'sits inside’ Cr(73) as the degree d ‘slice.’
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More Algebraic Structure
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Useful to consider algebraic structures on C0(73) in addition
to vector space structure

F e C°(7/5), f € R[x,y, z] a polynomial. Then f - F € Co(ﬁ).
We say CO(P) is an R[x, y, z]-module

Why is this a useful perspective?

>

Graded modules over polynomial rings are a central object of
study in commutative algebra and algebraic geometry.

Loosely, these subjects formalize ‘doing linear algebra with
polynomials.’

Thanks to insights of Billera, we can use tools from
homological algebra and algebraic topology.

Homological algebra is as an algebraic formalization of the
"inclusion-exclusion’ principle.

Algebraic topology detects ‘holes’
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Here are a few things that can be done:

» Calculating dim C/(P) is equivalent to computing the Hilbert
function of C"(P). There are standard approaches to this
problem in computational commutative algebra, and efficient
algorithms.

> Relation between PL functions and self-stresses generalizes to
a correspondence between splines and syzygies, and
dependence of this correspondence on P being simply
connected is completely clarified (thanks to Billera).

» Via some homological algebra, dim C(P) has consequences

for freeness of CO(P) as an R[x, y, z]-module. This in turn
impacts how easy it is to calculate dim C3(P) for d > 1.



THANK YOU!
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