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Piecewise Polynomials

Spline

A piecewise polynomial function, continuously differentiable to
some order.
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Some Context: Splines in Calculus 1

Low degree splines are used in Calc 1 to approximate integrals.
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Low degree splines are used in Calc 1 to approximate integrals.

f(x)

Graph of a function
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Some Context: Splines in Calculus 1

Low degree splines are used in Calc 1 to approximate integrals.

f(x)

Trapezoid Rule
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Some Context: Splines in Calculus 1

Low degree splines are used in Calc 1 to approximate integrals.

f(x)

Simpson’s Rule
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Origin: Ship-Building

Term spline originated in shipbuilding - referred to flexible
wooden strips anchored at several points.

Source: http://technologycultureboats.blogspot.com/2014/12/gustave-caillebotte-and-curves.html
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Application: Computer-Aided Geometric Design

Today, splines are used extensively to create models by
interpolating datapoints (CAGD).

Source: http://www.tsplines.com/products/what-are-t-splines.html
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Calculus Exercise: I

For what value of c is the following function continuous?

f (x) =

{
x2 + x + c −1 ≤ x < 0
2x + 1 0 ≤ x ≤ 1

Answer: c = 1

With c = 1, f (x) is a C 0 spline on the subdivision
I = [−1, 0] ∪ [0, 1] of [−1, 1].

Notation: f ∈ C 0
2 (I )

-1 0 1
x

1

2

3

y

Graph of f
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Calculus Exercise II

For what value of b is the following function differentiable?

g(x) =

{
x2 + bx + 1 −1 ≤ x < 0
2x + 1 0 ≤ x ≤ 1

Answer: b = 2

With b = 2, g(x) is a C 1 spline on I = [−1, 0] ∪ [0, 1].

Notation: g ∈ C 1
2 (I )

-1 0 1
x

1

2

3

y

Graph of g
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Counting Univariate PL Functions

I = [−1, 0] ∪ [0, 1]

h(x) =

{
ax + b −1 ≤ x < 0
cx + d 0 ≤ x ≤ 1

Which of the coefficients a, b, c , d can be chosen freely if h(x)
is required to be continuous?

Must have b = d

So free to determine a, b, c

C 0
1 (I ) is a three dimensional vector space
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Dimension Question

Suppose I is a subdivision of an interval into a union of
subintervals.

What is dim C 0
1 (I )?

Can we find a basis for C 0
1 (I )?
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Counting Univariate PL Functions

If I is a subdivision of an interval with v vertices, then
dim C 0

1 (I ) = v .

Proof by picture: PL function determined uniquely by value on
vertices
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Tent Functions

A basis for C 0
1 (I ) is given by ‘Courant functions’ or ‘tent

functions’ are 1 at a chosen vertex and 0 at all others.
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Counting Bivariate PL Functions

∆ = union of three triangles below

H0, 0L

H-1, -1L

H0, 1L

H1, 0LT1

T2

T3

∆

Continuity =⇒

b = e
c = f = i

d = g
a + b = g + h

a, b, c , d determine
e, f , g , h, i
=⇒ C 0

1 (∆) is
4-dim vector space
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Counting Bivariate PL Functions

∆ = union of three triangles below

F1=ax+by+c

F2=dx+ey+f

F3=gx+hy+i

x=0

y=0

x=y

Candidate for F ∈ C 0
1 (∆)

Continuity =⇒

b = e
c = f = i

d = g
a + b = g + h

a, b, c , d determine
e, f , g , h, i
=⇒ C 0

1 (∆) is
4-dim vector space
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Counting Bivariate PL Functions

If ∆ ⊂ R2 is a triangulation with v vertices, then
dim C 0

1 (∆) = v .

Proof by picture: PL function on ∆ uniquely determined by
value at vertices.
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Counting Bivariate PL Functions

If ∆ ⊂ R2 is a triangulation with v vertices, then
dim C 0

1 (∆) = v .

Proof by picture: PL function on ∆ uniquely determined by
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Tent Functions 2

A basis for C 0
1 (∆) is given by Courant functions, which take a

value of 1 at a chosen vertex and 0 at all other vertices.

Note: dim C 0
1 (I ) and dim C 0

1 (∆) only depended on
number of vertices.

No dependence on geometry!
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Polygonal Subdivisions

What if we use a polygonal subdivision instead of a
triangulation?

H-1,-1L H1,-1L

H1,1LH-1,1L

H-2,-2L H2,-2L

H2,2LH-2,2L

A polygonal subdivision P

Does dim C 0
1 (P) = v?
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If P ⊂ R2 is a polygonal subdivision, dim C 0
1 (P) depends on

geometry of P!

dim C 0
1 (P) < v unless P is a triangulation

Lose tent functions!
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Proof by Example

H-1,-1L H1,-1L

H1,1LH-1,1L

H-2,-2L H2,-2L

H2,2LH-2,2L

H-1,-1L H1,-1L

H1,1LH-1,1L

H-2,-2L H2,-2L

H2,3L

H-2,2L

Q1 Q2

dim C 0
1 (Q1) = 4 dim C 0

1 (Q2) = 3
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Trivial PL Functions

A trivial PL function on P has the same linear function on
each face.

dim(trivial splines on P) = 3 always, with basis 1, x , y .

1 x y
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NonTrivial PL Functions

Nontrivial PL function on has at least two different linear
functions on different faces.

One nontrivial PL function on Q1, whose graph is below:

When you move to Q2 you lose this function!
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Dependence on Geometry

More explicit: Polygonal subdivisions coming from projections
of polytopes have special PL functions.

Now look in one of the faces:

The nontrivial PL function is a ‘deformed cube’
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Dependence on Geometry

More explicit: Polygonal subdivisions coming from projections
of polytopes have special PL functions.

Here’s a cube

Now look in one of the faces:

The nontrivial PL function is a ‘deformed cube’
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More explicit: Polygonal subdivisions coming from projections
of polytopes have special PL functions.
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Now look in one of the faces:

The nontrivial PL function is a ‘deformed cube’
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More Interesting Example

Chop off cube corners

Look into an octagonal face:

Nontrivial PL function is ’deformed’ version of truncated cube
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Tension and Compression on Polygonal
Subdivisions

Planar framework of bars and joints given by edges and
vertices of polygonal subdivision

Bar in tension or compression exerts force along the bar
equal in magnitude but opposite in direction at endpoints

Tension

Compression

Note: Arrows represent force, not movement

Scalar ωij gives tension or compression between vertices pi , pj .
Force ωij(pj − pi ) at pi

Force ωij(pi − pj) at pj

ωij < 0 =⇒ tension

ωij > 0 =⇒ compression
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Self-Stress

A self-stress on a framework is an assignment of scalars ωij

along the edges eij satisfying∑
pj adjacent to pi

ωij(pj − pi ) = 0.

for every interior vertex pi .

(-1,-1) (1,-1)

(1,1)(-1,1)

(-2,-2) (2,-2)

(2,2)(-2,2)

22

2

2

44

44

A nontrivial self-stress on P1
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Matrix for Self-Stresses

Self-stresses are the null space of a matrix.



12 23 34 14 15 26 37 48

p1 0 0 0 2 −1 0 0 0
−2 0 0 0 1 0 0 0

p2 0 2 0 0 0 −1 0 0
2 0 0 0 0 −1 0 0

p3 0 −2 0 0 0 0 1 0
0 0 2 0 0 0 −1 0

p4 0 0 0 −2 0 0 0 1
0 0 −2 0 0 0 0 1
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Maxwell’s Observation [Crapo-Whiteley ‘93]

Nontrivial stresses are in 1-1 correspondence (almost) with
nontrivial PL functions on P!

Restrict to faces
adjacent to a single
edge e

Take normals
(z-component= 1)

Translate normals to
(0, 0,−1)

Connect normal tips

ωe = +
4

2
= 2

Sign of ωe depends on orientation.
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Maxwell’s Observation [Crapo-Whiteley ‘93]

Nontrivial stresses are in 1-1 correspondence (almost) with
nontrivial PL functions on P!

Start with graph

Restrict to faces
adjacent to a single
edge e

Take normals
(z-component= 1)

Translate normals to
(0, 0,−1)

Connect normal tips

ωe = +
4

2
= 2

Sign of ωe depends on orientation.
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Self-Stresses and PL Functions

Trivial PL functions (same linear function on every face)
↔ trivial stress (0 on all edges)

Nontrivial piecewise linear functions ↔ nontrivial stresses

This correspondence is unique, up to adding trivial PL
functions on the left hand side.

A framework which only has the trivial stress is called
independent.

P1 is not independent P2 is independent
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Summary so far

We’ve seen:

dim C 0
1 (I ) = v for a subdivision I of an interval

dim C 0
1 (∆) = v for a planar triangulation ∆

dim C 0
1 (P) for a planar polygonal subdivision P relies on

counting the number of ways polygonal surfaces can
project onto P
Equivalently, dim C 0

1 (P) relies on computing the
dimension of the vector space of self-stresses on P.
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Where to now?

What about dim C r
d(P), where r > 0, d > 1?

For fixed P and d large, dim C r
d(P) is a polynomial in d!

For small d , dim C r
d(P) may not agree with this

polynomial.
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Univariate Dimension Formula

Suppose I is a subdivision of an interval with v0 interior
vertices and e edges. Then

dim C r
d(I ) =

{
d + 1 d < r + 1
e(d + 1)− v0(r + 1) d ≥ r + 1

Basis for C r
d(I ) is given by B-splines.

B-spline basis for C 1
2 (I ) where I consists of two subintervals
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Dimension Formulas for Triangulations

∆ ⊂ R2 triangulation: f triangles, e0 interior edges, v0 interior
vertices. For d ≥ 0,

dim C 0
d (∆) = f

(d + 2)(d + 1)

2
− e0(d + 1) + v0

In fact, the algebraic structure of C 0(∆) is completely
combinatorial [Billera ‘89].

∆ ⊂ R2 triangulation:

dim C r
d(∆) is known if d ≥ 3r + 1 and ∆ is

generic [Alfeld-Schumaker ‘90]

A local basis for C r
d(∆) is known if

d ≥ 3r + 2 [Hong ‘91, Ibrahim-Schumaker ‘91]

If ∆ is a triangulation in R2, no known formula for dim C 1
3 (∆)!
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Dimension Formulas for Polygonal Subdivisions

[McDonald-Schenck ‘09]

P ⊂ R2 a polygonal subdivision (convex polygons): For d � 0,

dim C 0
d (P) = f

(d + 2)(d + 1)

2
− e0(d + 1) + v0 + α,

where α is a constant depending on the geometry of P.

D. ‘15: Above formula holds if d ≥ 2F − 1, where F is number
of edges in largest polygon of P.

Both results above extend to C r
d(P), when P ⊂ R2 is planar.
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Takeaways

If d is close to r + 1:

dim C r
d(P) is really hard to compute!

C r
d(P) is particularly useful for applications.



Counting
Piecewise
Linear

Functions

Michael
DiPasquale

Two Calculus
Exercises

Univariate PL
Functions

Bivariate PL
Functions

Static
Equilibrium

Where to
now?

THANK YOU!
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