Counting Piecewise Linear Functions

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static
Equilibrium
Where to now?

Michael DiPasquale

Oklahoma State University

Smith College
Center for Women in Mathematics

March 3, 2016

Piecewise Polynomials

Counting
Piecewise Linear Functions

Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static
Equilibrium
Where to
now?

Spline

A piecewise polynomial function, continuously differentiable to some order.

Some Context: Splines in Calculus 1

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL
Functions
Static
Equilibrium
Where to now?

Low degree splines are used in Calc 1 to approximate integrals.

Some Context: Splines in Calculus 1

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL
Functions
Static
Equilibrium
Where to now?

Low degree splines are used in Calc 1 to approximate integrals.

Some Context: Splines in Calculus 1

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL
Functions
Static
Equilibrium
Where to now?

Low degree splines are used in Calc 1 to approximate integrals.

Some Context: Splines in Calculus 1

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static
Equilibrium
Where to now?

Low degree splines are used in Calc 1 to approximate integrals.

Simpson's Rule

Origin: Ship-Building

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static
Equilibrium
Where to now?

Term spline originated in shipbuilding - referred to flexible wooden strips anchored at several points.

Source: http://technologycultureboats.blogspot.com/2014/12/gustave-caillebotte-and-curves.html

Application: Computer-Aided Geometric Design

Counting
Piecewise
Linear
Functions
Michael DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static
Equilibrium
Where to now?

Today, splines are used extensively to create models by interpolating datapoints (CAGD).

Source: http://www.tsplines.com/products/what-are-t-splines.htm/

Calculus Exercise: I

Counting
Piecewise Linear Functions

Michael
DiPasquale

Two Calculus
Exercises
Univariate PL
Functions
Bivariate PL
Functions
Static
Equilibrium
Where to now?

For what value of c is the following function continuous?

$$
f(x)= \begin{cases}x^{2}+x+c & -1 \leq x<0 \\ 2 x+1 & 0 \leq x \leq 1\end{cases}
$$

Calculus Exercise: I

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus
Exercises
Univariate PL
Functions
Bivariate PL Functions

Static
Equilibrium

Where to

 now?For what value of c is the following function continuous?

$$
f(x)= \begin{cases}x^{2}+x+c & -1 \leq x<0 \\ 2 x+1 & 0 \leq x \leq 1\end{cases}
$$

- Answer: $c=1$
- With $c=1, f(x)$ is a C^{0} spline on the subdivision $I=[-1,0] \cup[0,1]$ of $[-1,1]$.
- Notation: $f \in C_{2}^{0}(I)$

Calculus Exercise: I

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static
Equilibrium

For what value of c is the following function continuous?

$$
f(x)= \begin{cases}x^{2}+x+c & -1 \leq x<0 \\ 2 x+1 & 0 \leq x \leq 1\end{cases}
$$

- Answer: $c=1$
- With $c=1, f(x)$ is a C^{0} spline on the subdivision $I=[-1,0] \cup[0,1]$ of $[-1,1]$.
- Notation: $f \in C_{2}^{0}(I)$

Graph of f

Calculus Exercise II

Counting Piecewise Linear Functions

Michael
DiPasquale

Two Calculus
Exercises
Univariate PL
Functions
Bivariate PL
Functions
Static
Equilibrium
Where to now?

For what value of b is the following function differentiable?

$$
g(x)= \begin{cases}x^{2}+b x+1 & -1 \leq x<0 \\ 2 x+1 & 0 \leq x \leq 1\end{cases}
$$

Calculus Exercise II

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus
Exercises
Univariate PL
Functions
Bivariate PL Functions

Static
Equilibrium
Where to now?

For what value of b is the following function differentiable?

$$
g(x)= \begin{cases}x^{2}+b x+1 & -1 \leq x<0 \\ 2 x+1 & 0 \leq x \leq 1\end{cases}
$$

- Answer: $b=2$
- With $b=2, g(x)$ is a C^{1} spline on $I=[-1,0] \cup[0,1]$.
- Notation: $g \in C_{2}^{1}(I)$

Calculus Exercise II

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus
Exercises
Univariate PL
Functions
Bivariate PL Functions

Static
Equilibrium
Where to now?

For what value of b is the following function differentiable?

$$
g(x)= \begin{cases}x^{2}+b x+1 & -1 \leq x<0 \\ 2 x+1 & 0 \leq x \leq 1\end{cases}
$$

- Answer: $b=2$
- With $b=2, g(x)$ is a C^{1} spline on $I=[-1,0] \cup[0,1]$.
- Notation: $g \in C_{2}^{1}(I)$

Graph of g

Counting Univariate PL Functions

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL
Functions
Static
Equilibrium

Where to

 now?$$
I=[-1,0] \cup[0,1]
$$

$$
h(x)= \begin{cases}a x+b & -1 \leq x<0 \\ c x+d & 0 \leq x \leq 1\end{cases}
$$

Which of the coefficients a, b, c, d can be chosen freely if $h(x)$ is required to be continuous?

Counting Univariate PL Functions

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static
Equilibrium
Where to now?

$$
I=[-1,0] \cup[0,1]
$$

$$
h(x)= \begin{cases}a x+b & -1 \leq x<0 \\ c x+d & 0 \leq x \leq 1\end{cases}
$$

Which of the coefficients a, b, c, d can be chosen freely if $h(x)$ is required to be continuous?

- Must have $b=d$
- So free to determine a, b, c
- $C_{1}^{0}(I)$ is a three dimensional vector space

Dimension Question

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static
Equilibrium
Where to now?

Suppose I is a subdivision of an interval into a union of subintervals.

- What is $\operatorname{dim} C_{1}^{0}(I)$?
- Can we find a basis for $C_{1}^{0}(I)$?

Counting Univariate PL Functions

Counting
Piecewise Linear Functions

Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL
Functions
Static
Equilibrium
Where to now?

If I is a subdivision of an interval with v vertices, then $\operatorname{dim} C_{1}^{0}(I)=v$.

Counting Univariate PL Functions

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL
Functions
Static
Equilibrium
Where to now?

If I is a subdivision of an interval with v vertices, then $\operatorname{dim} C_{1}^{0}(I)=v$.

Proof by picture: PL function determined uniquely by value on vertices

Counting Univariate PL Functions

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static
Equilibrium
Where to now?

If I is a subdivision of an interval with v vertices, then $\operatorname{dim} C_{1}^{0}(I)=v$.

Proof by picture: PL function determined uniquely by value on vertices

Counting Univariate PL Functions

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL
Functions
Static
Equilibrium

If I is a subdivision of an interval with v vertices, then $\operatorname{dim} C_{1}^{0}(I)=v$.

Proof by picture: PL function determined uniquely by value on vertices

Tent Functions

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL
Functions
Static
Equilibrium
Where to now?

A basis for $C_{1}^{0}(I)$ is given by 'Courant functions' or 'tent functions' are 1 at a chosen vertex and 0 at all others.

Tent Functions

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL
Functions
Static
Equilibrium
Where to now?

A basis for $C_{1}^{0}(I)$ is given by 'Courant functions' or 'tent functions' are 1 at a chosen vertex and 0 at all others.

Tent Functions

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL
Functions
Static
Equilibrium
Where to now?

A basis for $C_{1}^{0}(I)$ is given by 'Courant functions' or 'tent functions' are 1 at a chosen vertex and 0 at all others.

Tent Functions

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL
Functions
Static
Equilibrium
Where to now?

A basis for $C_{1}^{0}(I)$ is given by 'Courant functions' or 'tent functions' are 1 at a chosen vertex and 0 at all others.

Tent Functions

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL
Functions
Static
Equilibrium
Where to now?

A basis for $C_{1}^{0}(I)$ is given by 'Courant functions' or 'tent functions' are 1 at a chosen vertex and 0 at all others.

Tent Functions

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL
Functions
Static
Equilibrium
Where to now?

A basis for $C_{1}^{0}(I)$ is given by 'Courant functions' or 'tent functions' are 1 at a chosen vertex and 0 at all others.

Counting Bivariate PL Functions

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static
Equilibrium
Where to
now?
$\Delta=$ union of three triangles below

Δ

Counting Bivariate PL Functions

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static
Equilibrium
Where to now?
$\Delta=$ union of three triangles below

Candidate for $F \in C_{1}^{0}(\Delta)$

Counting Bivariate PL Functions

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL
Functions
Bivariate PL Functions

Static
Equilibrium
Where to now?
$\Delta=$ union of three triangles below

Continuity \Longrightarrow

$$
\begin{gathered}
b=e \\
c=f=i \\
d=g \\
a+b=g+h
\end{gathered}
$$

Candidate for $F \in C_{1}^{0}(\Delta)$

Counting Bivariate PL Functions

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL
Functions
Bivariate PL Functions

Static
Equilibrium
Where to now?
$\Delta=$ union of three triangles below

Continuity \Longrightarrow

$$
\begin{gathered}
b=e \\
c=f=i \\
d=g \\
a+b=g+h
\end{gathered}
$$

a, b, c, d determine
e, f, g, h, i
$\Longrightarrow C_{1}^{0}(\Delta)$ is
4-dim vector space
Candidate for $F \in C_{1}^{0}(\Delta)$

Counting Bivariate PL Functions

Counting
Piecewise Linear Functions

Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static
Equilibrium
Where to
now?

If $\Delta \subset \mathbb{R}^{2}$ is a triangulation with v vertices, then $\operatorname{dim} C_{1}^{0}(\Delta)=v$.

Counting Bivariate PL Functions

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static
Equilibrium
Where to now?

If $\Delta \subset \mathbb{R}^{2}$ is a triangulation with v vertices, then $\operatorname{dim} C_{1}^{0}(\Delta)=v$.

Proof by picture: PL function on Δ uniquely determined by value at vertices.

Counting Bivariate PL Functions

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static
Equilibrium
Where to now?

If $\Delta \subset \mathbb{R}^{2}$ is a triangulation with v vertices, then $\operatorname{dim} C_{1}^{0}(\Delta)=v$.

Proof by picture: PL function on Δ uniquely determined by value at vertices.

Counting Bivariate PL Functions

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static
Equilibrium
Where to now?

If $\Delta \subset \mathbb{R}^{2}$ is a triangulation with v vertices, then $\operatorname{dim} C_{1}^{0}(\Delta)=v$.

Proof by picture: PL function on Δ uniquely determined by value at vertices.

Counting Bivariate PL Functions

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static
Equilibrium
Where to now?

If $\Delta \subset \mathbb{R}^{2}$ is a triangulation with v vertices, then $\operatorname{dim} C_{1}^{0}(\Delta)=v$.

Proof by picture: PL function on Δ uniquely determined by value at vertices.

Tent Functions 2

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

A basis for $C_{1}^{0}(\Delta)$ is given by Courant functions, which take a value of 1 at a chosen vertex and 0 at all other vertices.

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static
Equilibrium
Where to now?

Tent Functions 2

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static
Equilibrium
Where to now?

A basis for $C_{1}^{0}(\Delta)$ is given by Courant functions, which take a value of 1 at a chosen vertex and 0 at all other vertices.

Tent Functions 2

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static
Equilibrium
Where to now?

A basis for $C_{1}^{0}(\Delta)$ is given by Courant functions, which take a value of 1 at a chosen vertex and 0 at all other vertices.

Tent Functions 2

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static
Equilibrium
Where to now?

A basis for $C_{1}^{0}(\Delta)$ is given by Courant functions, which take a value of 1 at a chosen vertex and 0 at all other vertices.

Tent Functions 2

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static
Equilibrium
Where to now?

A basis for $C_{1}^{0}(\Delta)$ is given by Courant functions, which take a value of 1 at a chosen vertex and 0 at all other vertices.

Tent Functions 2

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

A basis for $C_{1}^{0}(\Delta)$ is given by Courant functions, which take a value of 1 at a chosen vertex and 0 at all other vertices.

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static
Equilibrium
Where to now?

Tent Functions 2

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static
Equilibrium
Where to now?

A basis for $C_{1}^{0}(\Delta)$ is given by Courant functions, which take a value of 1 at a chosen vertex and 0 at all other vertices.

Tent Functions 2

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static
Equilibrium
Where to now?

A basis for $C_{1}^{0}(\Delta)$ is given by Courant functions, which take a value of 1 at a chosen vertex and 0 at all other vertices.

Tent Functions 2

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static
Equilibrium
Where to now?

A basis for $C_{1}^{0}(\Delta)$ is given by Courant functions, which take a value of 1 at a chosen vertex and 0 at all other vertices.

Tent Functions 2

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static
Equilibrium

A basis for $C_{1}^{0}(\Delta)$ is given by Courant functions, which take a value of 1 at a chosen vertex and 0 at all other vertices.

- Note: $\operatorname{dim} C_{1}^{0}(I)$ and $\operatorname{dim} C_{1}^{0}(\Delta)$ only depended on number of vertices.
- No dependence on geometry!

Polygonal Subdivisions

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus

Exercises

Univariate PL Functions

Bivariate PL Functions

Static
Equilibrium
Where to now?

What if we use a polygonal subdivision instead of a triangulation?

Polygonal Subdivisions

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static
Equilibrium
Where to now?

What if we use a polygonal subdivision instead of a triangulation?

A polygonal subdivision \mathcal{P}

Polygonal Subdivisions

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static
Equilibrium
Where to now?

What if we use a polygonal subdivision instead of a triangulation?

A polygonal subdivision \mathcal{P}
Does $\operatorname{dim} C_{1}^{0}(\mathcal{P})=v ?$

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static
Equilibrium
Where to now?

If $\mathcal{P} \subset \mathbb{R}^{2}$ is a polygonal subdivision, $\operatorname{dim} C_{1}^{0}(\mathcal{P})$ depends on geometry of \mathcal{P} !

- $\operatorname{dim} C_{1}^{0}(\mathcal{P})<v$ unless \mathcal{P} is a triangulation
- Lose tent functions!

Proof by Example

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static
Equilibrium

Where to

 now?
\mathcal{Q}_{1}
$\operatorname{dim} C_{1}^{0}\left(\mathcal{Q}_{1}\right)=4$

$\operatorname{dim} C_{1}^{0}\left(\mathcal{Q}_{2}\right)=3$

Trivial PL Functions

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static
Equilibrium
Where to now?

- A trivial PL function on \mathcal{P} has the same linear function on each face.
- $\operatorname{dim}($ trivial splines on $\mathcal{P})=3$ always, with basis $1, x, y$.

NonTrivial PL Functions

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static
Equilibrium
Where to now?

- Nontrivial PL function on has at least two different linear functions on different faces.
- One nontrivial PL function on \mathcal{Q}_{1}, whose graph is below:

When you move to \mathcal{Q}_{2} you lose this function!

Dependence on Geometry

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static
Equilibrium
Where to now?

More explicit: Polygonal subdivisions coming from projections of polytopes have special PL functions.

Dependence on Geometry

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus

Exercises

Univariate PL
Functions
Bivariate PL Functions

Static
Equilibrium
Where to now?

More explicit: Polygonal subdivisions coming from projections of polytopes have special PL functions.

Here's a cube

Dependence on Geometry

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static
Equilibrium
Where to now?

More explicit: Polygonal subdivisions coming from projections of polytopes have special PL functions.

Make it transparent

Dependence on Geometry

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static
Equilibrium now?

More explicit: Polygonal subdivisions coming from projections of polytopes have special PL functions.

Make it transparent Now look in one of the faces:

Dependence on Geometry

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static
Equilibrium now?

More explicit: Polygonal subdivisions coming from projections of polytopes have special PL functions.

Make it transparent Now look in one of the faces:

The nontrivial PL function is a 'deformed cube'

More Interesting Example

More Interesting Example

Counting Piecewise Linear Functions

Michael DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static
Equilibrium
Where to
now?
Make it transparent

More Interesting Example

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus

Exercises

Univariate PL
Functions
Bivariate PL Functions

Static
Equilibrium
Where to
now?

Make it transparent Look into an octagonal face:

More Interesting Example

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static
Equilibrium
Where to now?

Make it transparent Look into an octagonal face:

Nontrivial PL function is 'deformed' version of truncated cube

Tension and Compression on Polygonal Subdivisions

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static
Equilibrium
Where to now?

- Planar framework of bars and joints given by edges and vertices of polygonal subdivision

Tension and Compression on Polygonal Subdivisions

Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static
Equilibrium

- Planar framework of bars and joints given by edges and vertices of polygonal subdivision
- Bar in tension or compression exerts force along the bar equal in magnitude but opposite in direction at endpoints

Tension and Compression on Polygonal Subdivisions

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static
Equilibrium

- Planar framework of bars and joints given by edges and vertices of polygonal subdivision
- Bar in tension or compression exerts force along the bar equal in magnitude but opposite in direction at endpoints

Tension and Compression on Polygonal Subdivisions

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static
Equilibrium

- Planar framework of bars and joints given by edges and vertices of polygonal subdivision
- Bar in tension or compression exerts force along the bar equal in magnitude but opposite in direction at endpoints

Tension and Compression on Polygonal Subdivisions

Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static
Equilibrium
Where to now?

- Planar framework of bars and joints given by edges and vertices of polygonal subdivision
- Bar in tension or compression exerts force along the bar equal in magnitude but opposite in direction at endpoints

Note: Arrows represent force, not movement

Tension and Compression on Polygonal Subdivisions

Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

- Planar framework of bars and joints given by edges and vertices of polygonal subdivision
- Bar in tension or compression exerts force along the bar equal in magnitude but opposite in direction at endpoints

Note: Arrows represent force, not movement
Scalar $\omega_{i j}$ gives tension or compression between vertices p_{i}, p_{j}.

- Force $\omega_{i j}\left(p_{j}-p_{i}\right)$ at p_{i}
- Force $\omega_{i j}\left(p_{i}-p_{j}\right)$ at p_{j}

Tension and Compression on Polygonal Subdivisions

Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

- Planar framework of bars and joints given by edges and vertices of polygonal subdivision
- Bar in tension or compression exerts force along the bar equal in magnitude but opposite in direction at endpoints

Note: Arrows represent force, not movement
Scalar $\omega_{i j}$ gives tension or compression between vertices p_{i}, p_{j}.

- Force $\omega_{i j}\left(p_{j}-p_{i}\right)$ at $p_{i} \quad \omega_{i j}<0 \Longrightarrow$ tension
- Force $\omega_{i j}\left(p_{i}-p_{j}\right)$ at p_{j}
- $\omega_{i j}>0 \Longrightarrow$ compression

Self-Stress

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static
Equilibrium
Where to now?

A self-stress on a framework is an assignment of scalars $\omega_{i j}$ along the edges $e_{i j}$ satisfying

$$
\sum \quad \omega_{i j}\left(p_{j}-p_{i}\right)=0
$$

p_{j} adjacent to p_{i}
for every interior vertex p_{i}.

Self-Stress

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static Equilibrium

Where to now?

A self-stress on a framework is an assignment of scalars $\omega_{i j}$ along the edges $e_{i j}$ satisfying

$$
\sum \quad \omega_{i j}\left(p_{j}-p_{i}\right)=0
$$

p_{j} adjacent to p_{i}
for every interior vertex p_{i}.

A nontrivial self-stress on \mathcal{P}_{1}

Matrix for Self-Stresses

Counting
Piecewise
Linear
Functions
Michael DiPasquale

Two Calculus Exercises

Univariate PL
Functions
Bivariate PL Functions

Static
Equilibrium
Where to now?

Self-stresses are the null space of a matrix.
$p_{2}\left(\begin{array}{cccccccc}12 & 23 & 34 & 14 & 15 & 26 & 37 & 48 \\ 0 & 0 & 0 & 2 & -1 & 0 & 0 & 0 \\ -2 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & -1 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & -2 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -2 & 0 & 0 & 0 & 1 \\ 0 & 0 & -2 & 0 & 0 & 0 & 0 & 1\end{array}\right)$

Maxwell's Observation [Crapo-Whiteley '93]

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL
Functions
Static
Equilibrium
Where to now?

Nontrivial stresses are in 1-1 correspondence (almost) with nontrivial PL functions on \mathcal{P} !

Maxwell's Observation [Crapo-Whiteley '93]

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static
Equilibrium
Where to now?

Nontrivial stresses are in 1-1 correspondence (almost) with nontrivial PL functions on \mathcal{P} !

> Start with graph

Maxwell's Observation [Crapo-Whiteley '93]

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static
Equilibrium
Where to now?

Nontrivial stresses are in 1-1 correspondence (almost) with nontrivial PL functions on \mathcal{P} !

Restrict to faces adjacent to a single edge e

Maxwell's Observation [Crapo-Whiteley '93]

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL
Functions
Bivariate PL
Functions
Static
Equilibrium

Nontrivial stresses are in 1-1 correspondence (almost) with nontrivial PL functions on \mathcal{P} !

Restrict to faces adjacent to a single edge e
Take normals $(z$-component $=1)$

Maxwell's Observation [Crapo-Whiteley '93]

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL
Functions
Bivariate PL Functions

Static
Equilibrium
Where to now?

Nontrivial stresses are in 1-1 correspondence (almost) with nontrivial PL functions on \mathcal{P} !

Restrict to faces adjacent to a single edge e
Take normals $(z$-component $=1)$

Translate normals to ($0,0,-1$)

Maxwell's Observation [Crapo-Whiteley '93]

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL
Functions
Bivariate PL Functions

Static
Equilibrium
Where to now?

Nontrivial stresses are in 1-1 correspondence (almost) with nontrivial PL functions on \mathcal{P} !

Restrict to faces adjacent to a single edge e
Take normals (z-component=1)

Translate normals to ($0,0,-1$)
Connect normal tips

Maxwell's Observation [Crapo-Whiteley '93]

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL
Functions
Bivariate PL Functions

Static
Equilibrium
Where to now?

Nontrivial stresses are in 1-1 correspondence (almost) with nontrivial PL functions on \mathcal{P} !

Restrict to faces adjacent to a single edge e
Take normals (z-component=1)

Translate normals to ($0,0,-1$)
Connect normal tips

$$
\omega_{e}=+\frac{4}{2}=2
$$

Maxwell's Observation [Crapo-Whiteley '93]

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static
Equilibrium
Where to now?

Nontrivial stresses are in 1-1 correspondence (almost) with nontrivial PL functions on \mathcal{P} !

Restrict to faces adjacent to a single edge e
Take normals $(z$-component $=1)$

Translate normals to ($0,0,-1$)
Connect normal tips

$$
\omega_{e}=+\frac{4}{2}=2
$$

Sign of ω_{e} depends on orientation.

Self-Stresses and PL Functions

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus
Exercises
Univariate PL
Functions
Bivariate PL
Functions
Static
Equilibrium
Where to
now?

- Trivial PL functions (same linear function on every face) \leftrightarrow trivial stress (0 on all edges)

Self-Stresses and PL Functions

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL
Functions
Static
Equilibrium
Where to now?

- Trivial PL functions (same linear function on every face) \leftrightarrow trivial stress (0 on all edges)
- Nontrivial piecewise linear functions \leftrightarrow nontrivial stresses

Self-Stresses and PL Functions

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static
Equilibrium
Where to now?

- Trivial PL functions (same linear function on every face) \leftrightarrow trivial stress (0 on all edges)
- Nontrivial piecewise linear functions \leftrightarrow nontrivial stresses
- This correspondence is unique, up to adding trivial PL functions on the left hand side.

Self-Stresses and PL Functions

Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static
Equilibrium

- Trivial PL functions (same linear function on every face) \leftrightarrow trivial stress (0 on all edges)
- Nontrivial piecewise linear functions \leftrightarrow nontrivial stresses
- This correspondence is unique, up to adding trivial PL functions on the left hand side.
- A framework which only has the trivial stress is called independent.

Self-Stresses and PL Functions

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static

- Trivial PL functions (same linear function on every face) \leftrightarrow trivial stress (0 on all edges)
- Nontrivial piecewise linear functions \leftrightarrow nontrivial stresses
- This correspondence is unique, up to adding trivial PL functions on the left hand side.
- A framework which only has the trivial stress is called independent.

\mathcal{P}_{1} is not independent

\mathcal{P}_{2} is independent

Summary so far

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static
Equilibrium

We've seen:

- $\operatorname{dim} C_{1}^{0}(I)=v$ for a subdivision I of an interval
- $\operatorname{dim} C_{1}^{0}(\Delta)=v$ for a planar triangulation Δ
- $\operatorname{dim} C_{1}^{0}(\mathcal{P})$ for a planar polygonal subdivision \mathcal{P} relies on counting the number of ways polygonal surfaces can project onto \mathcal{P}
- Equivalently, $\operatorname{dim} C_{1}^{0}(\mathcal{P})$ relies on computing the dimension of the vector space of self-stresses on \mathcal{P}.

Where to now?

Counting
Piecewise Linear Functions

Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL
Functions
Static
Equilibrium
Where to now?

What about $\operatorname{dim} C_{d}^{r}(\mathcal{P})$, where $r>0, d>1$?

Where to now?

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static
Equilibrium
Where to now?

What about $\operatorname{dim} C_{d}^{r}(\mathcal{P})$, where $r>0, d>1$?

- For fixed \mathcal{P} and d large, $\operatorname{dim} C_{d}^{r}(\mathcal{P})$ is a polynomial in d !
- For small $d, \operatorname{dim} C_{d}^{r}(\mathcal{P})$ may not agree with this polynomial.

Univariate Dimension Formula

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static
Equilibrium
Where to now?

Suppose $/$ is a subdivision of an interval with v^{0} interior vertices and e edges. Then

$$
\operatorname{dim} C_{d}^{r}(I)= \begin{cases}d+1 & d<r+1 \\ e(d+1)-v^{0}(r+1) & d \geq r+1\end{cases}
$$

Univariate Dimension Formula

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static
Equilibrium
Where to now?

Suppose $/$ is a subdivision of an interval with v^{0} interior vertices and e edges. Then

$$
\operatorname{dim} C_{d}^{r}(I)= \begin{cases}d+1 & d<r+1 \\ e(d+1)-v^{0}(r+1) & d \geq r+1\end{cases}
$$

Basis for $C_{d}^{r}(I)$ is given by B-splines.

Univariate Dimension Formula

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static
Equilibrium
Where to now?

Suppose $/$ is a subdivision of an interval with v^{0} interior vertices and e edges. Then

$$
\operatorname{dim} C_{d}^{r}(I)= \begin{cases}d+1 & d<r+1 \\ e(d+1)-v^{0}(r+1) & d \geq r+1\end{cases}
$$

Basis for $C_{d}^{r}(I)$ is given by B-splines.

Univariate Dimension Formula

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static Equilibrium

Where to now?

Suppose $/$ is a subdivision of an interval with v^{0} interior vertices and e edges. Then

$$
\operatorname{dim} C_{d}^{r}(I)= \begin{cases}d+1 & d<r+1 \\ e(d+1)-v^{0}(r+1) & d \geq r+1\end{cases}
$$

Basis for $C_{d}^{r}(I)$ is given by B-splines.

B-spline basis for $C_{2}^{1}(I)$ where I consists of two subintervals

Univariate Dimension Formula

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static Equilibrium

Where to now?

Suppose $/$ is a subdivision of an interval with v^{0} interior vertices and e edges. Then

$$
\operatorname{dim} C_{d}^{r}(I)= \begin{cases}d+1 & d<r+1 \\ e(d+1)-v^{0}(r+1) & d \geq r+1\end{cases}
$$

Basis for $C_{d}^{r}(I)$ is given by B-splines.

B-spline basis for $C_{2}^{1}(I)$ where I consists of two subintervals

Univariate Dimension Formula

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static
Equilibrium
Where to now?

Suppose $/$ is a subdivision of an interval with v^{0} interior vertices and e edges. Then

$$
\operatorname{dim} C_{d}^{r}(I)= \begin{cases}d+1 & d<r+1 \\ e(d+1)-v^{0}(r+1) & d \geq r+1\end{cases}
$$

Basis for $C_{d}^{r}(I)$ is given by B-splines.

B-spline basis for $C_{2}^{1}(I)$ where I consists of two subintervals

Dimension Formulas for Triangulations

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static
Equilibrium
Where to now?
$\Delta \subset \mathbb{R}^{2}$ triangulation: f triangles, e^{0} interior edges, v^{0} interior vertices. For $d \geq 0$,

$$
\operatorname{dim} C_{d}^{0}(\Delta)=f \frac{(d+2)(d+1)}{2}-e^{0}(d+1)+v^{0}
$$

In fact, the algebraic structure of $C^{0}(\Delta)$ is completely combinatorial [Billera '89].

Dimension Formulas for Triangulations

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static
Equilibrium
Where to now?
$\Delta \subset \mathbb{R}^{2}$ triangulation: f triangles, e^{0} interior edges, v^{0} interior vertices. For $d \geq 0$,

$$
\operatorname{dim} C_{d}^{0}(\Delta)=f \frac{(d+2)(d+1)}{2}-e^{0}(d+1)+v^{0}
$$

In fact, the algebraic structure of $C^{0}(\Delta)$ is completely combinatorial [Billera '89].
$\Delta \subset \mathbb{R}^{2}$ triangulation:

- $\operatorname{dim} C_{d}^{r}(\Delta)$ is known if $d \geq 3 r+1$ and Δ is generic [Alfeld-Schumaker '90]
- A local basis for $C_{d}^{r}(\Delta)$ is known if $d \geq 3 r+2$ [Hong '91, Ibrahim-Schumaker '91]

Dimension Formulas for Triangulations

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static
Equilibrium
Where to now?
$\Delta \subset \mathbb{R}^{2}$ triangulation: f triangles, e^{0} interior edges, v^{0} interior vertices. For $d \geq 0$,

$$
\operatorname{dim} C_{d}^{0}(\Delta)=f \frac{(d+2)(d+1)}{2}-e^{0}(d+1)+v^{0}
$$

In fact, the algebraic structure of $C^{0}(\Delta)$ is completely combinatorial [Billera '89].
$\Delta \subset \mathbb{R}^{2}$ triangulation:

- $\operatorname{dim} C_{d}^{r}(\Delta)$ is known if $d \geq 3 r+1$ and Δ is generic [Alfeld-Schumaker '90]
- A local basis for $C_{d}^{r}(\Delta)$ is known if $d \geq 3 r+2$ [Hong '91, Ibrahim-Schumaker '91]

If Δ is a triangulation in \mathbb{R}^{2}, no known formula for $\operatorname{dim} C_{3}^{1}(\Delta)$!

Dimension Formulas for Polygonal Subdivisions

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static

Equilibrium
Where to now?

[McDonald-Schenck '09]

$\mathcal{P} \subset \mathbb{R}^{2}$ a polygonal subdivision (convex polygons): For $d \gg 0$,

$$
\operatorname{dim} C_{d}^{0}(\mathcal{P})=f \frac{(d+2)(d+1)}{2}-e^{0}(d+1)+v^{0}+\alpha
$$

where α is a constant depending on the geometry of \mathcal{P}.

Dimension Formulas for Polygonal Subdivisions

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static
Equilibrium
Where to now?

[McDonald-Schenck '09]

$\mathcal{P} \subset \mathbb{R}^{2}$ a polygonal subdivision (convex polygons): For $d \gg 0$,

$$
\operatorname{dim} C_{d}^{0}(\mathcal{P})=f \frac{(d+2)(d+1)}{2}-e^{0}(d+1)+v^{0}+\alpha
$$

where α is a constant depending on the geometry of \mathcal{P}. D. '15: Above formula holds if $d \geq 2 F-1$, where F is number of edges in largest polygon of \mathcal{P}.

Dimension Formulas for Polygonal Subdivisions

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static
Equilibrium
Where to now?

[McDonald-Schenck '09]

$\mathcal{P} \subset \mathbb{R}^{2}$ a polygonal subdivision (convex polygons): For $d \gg 0$,

$$
\operatorname{dim} C_{d}^{0}(\mathcal{P})=f \frac{(d+2)(d+1)}{2}-e^{0}(d+1)+v^{0}+\alpha
$$

where α is a constant depending on the geometry of \mathcal{P}. D. '15: Above formula holds if $d \geq 2 F-1$, where F is number of edges in largest polygon of \mathcal{P}.

Both results above extend to $C_{d}^{r}(\mathcal{P})$, when $\mathcal{P} \subset \mathbb{R}^{2}$ is planar.

Takeaways

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static
Equilibrium
Where to now?

If d is close to $r+1$:

- $\operatorname{dim} C_{d}^{r}(\mathcal{P})$ is really hard to compute!
- $C_{d}^{r}(\mathcal{P})$ is particularly useful for applications.

Michael
DiPasquale

Two Calculus Exercises

THANK YOU!

References I

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static Equilibrium

Where to now?
P. Alfeld, L. Schumaker, On the dimension of bivariate spline spaces of smoothness r and degree $d=3 r+1$, Numer. Math. 57 (1990) 651-661.
(R. Billera, Homology of Smooth Splines: Generic Triangulations and a Conjecture of Strang, Trans. Amer. Math. Soc. 310, 325-340 (1988).
國 L. Billera, The Algebra of Continuous Piecewise Polynomials, Adv. in Math. 76, 170-183 (1989).
目 L. Billera, L. Rose, A Dimension Series for Multivariate Splines, Discrete Comput. Geom. 6, 107-128 (1991).
H. Crapo, W. Whiteley, Autocontraintes planes et polyèdres projetés. I. Lemotif de base, Structural Topology 20, 55-78 (1993).

References II

Counting
Piecewise
Linear
Functions
Michael
DiPasquale

Two Calculus Exercises

Univariate PL Functions

Bivariate PL Functions

Static Equilibrium

Where to now?

國 G. Farin, Curves and Surfaces for Computer Aided Geometric Design, 4th ed., Academic Press, Boston, 1997.
D. Hong, Spaces of bivariate spline functions over triangulation, Approx. Theory Appl. 7 (1991), 56-75.
直 A. Ibrahim, L. Schumaker, Super spline spaces of smoothness r and degree $d \geq 3 r+2$, Constr. Approx. 7 (1991), 401-423.
T. McDonald, H. Schenck, Piecewise Polynomials on Polyhedral Complexes, Adv. in Appl. Math. 42 , no. 1, 82-93 (2009).

