Commutative Algebra and Piecewise Polynomials

Michael DiPasquale

Marquette University Colloquium

Piecewise Polynomials

Spline

A piecewise polynomial function, continuously differentiable to some order.

Origin

Term **spline** originated in shipbuilding - referred to flexible wooden strips anchored at several points.

Source: http://technologycultureboats.blogspot.com/2014/12/gustave-caillebotte-and-curves.html

Current applications

 Computer-Aided Geometric Design (CAGD): splines used to create models by interpolating datapoints.

Source: http://www.tsplines.com/products/what-are-t-splines.html

Current applications

 Computer-Aided Geometric Design (CAGD): splines used to create models by interpolating datapoints.

Source: http://www.tsplines.com/products/what-are-t-splines.html

- Finite Element Method (FEM): best approximation to a solution of a partial differential equation (PDE) is obtained in a spline space
- FEM especially useful for PDEs in engineering and mathematical physics

Most widely studied case: approximation of a function f(x) over an interval $\Delta = [a, b] \subset \mathbb{R}$ by C^r piecewise polynomials.

Univariate splines

Most widely studied case: approximation of a function f(x) over an interval $\Delta = [a, b] \subset \mathbb{R}$ by C^r piecewise polynomials.

- ► Subdivide $\Delta = [a, b]$ into subintervals: $\Delta = [a_0, a_1] \cup [a_1, a_2] \cup \cdots \cup [a_{n-1}, a_n]$
- Find a basis for the vector space C^r_d(Δ) of C^r piecewise polynomial functions on Δ with degree at most d (e.g. B-splines)
- Find best approximation to f(x) in $C_d^r(\Delta)$

Example: two subintervals

$$\begin{split} \Delta &= [a_0, a_1] \cup [a_1, a_2] \text{ (assume WLOG } a_1 = 0) \\ &(f_1, f_2) \in C_d^r(\Delta) \iff f_1^{(i)}(0) = f_2^{(i)}(0) \text{ for } 0 \le i \le r \\ &\iff x^{r+1} | (f_2 - f_1) \\ &\iff (f_2 - f_1) \in \langle x^{r+1} \rangle \end{split}$$

Example: two subintervals

$$\Delta = [a_0, a_1] \cup [a_1, a_2] \text{ (assume WLOG } a_1 = 0)$$
$$(f_1, f_2) \in C_d^r(\Delta) \iff f_1^{(i)}(0) = f_2^{(i)}(0) \text{ for } 0 \le i \le r$$
$$\iff x^{r+1} | (f_2 - f_1)$$
$$\iff (f_2 - f_1) \in \langle x^{r+1} \rangle$$

Even more explicitly:

•
$$f_1(x) = b_0 + b_1 x + \dots + b_d x^d$$

• $f_2(x) = c_0 + c_1 x + \dots + c_d x^d$
• $(f_1, f_2) \in C_d^r(\Delta) \iff b_0 = c_0, \dots, b_r = c_r.$

Example: two subintervals

$$\Delta = [a_0, a_1] \cup [a_1, a_2] \text{ (assume WLOG } a_1 = 0)$$
$$(f_1, f_2) \in C_d^r(\Delta) \iff f_1^{(i)}(0) = f_2^{(i)}(0) \text{ for } 0 \le i \le r$$
$$\iff x^{r+1} | (f_2 - f_1)$$
$$\iff (f_2 - f_1) \in \langle x^{r+1} \rangle$$

Even more explicitly:

•
$$f_1(x) = b_0 + b_1 x + \dots + b_d x^d$$

• $f_2(x) = c_0 + c_1 x + \dots + c_d x^d$
• $(f_1, f_2) \in C_d^r(\Delta) \iff b_0 = c_0, \dots, b_r = c_r.$
dim $C_d^r(\Delta) = \begin{cases} d+1 & \text{if } d \le r \\ (d+1) + (d-r) & \text{if } d > r \end{cases}$

Note: dim $C_d^r(\Delta)$ is polynomial in d for d > r.

Subdivision $I \subset \mathbb{R}^1 \to$ polytopal complex $\Delta \subset \mathbb{R}^2$

Subdivision $I \subset \mathbb{R}^1 \to$ polytopal complex $\Delta \subset \mathbb{R}^2$

Subdivision $I \subset \mathbb{R}^1 \to$ polytopal complex $\Delta \subset \mathbb{R}^2$

 Δ : full dimensional convex polygons (polytopes) 'glued' together along faces to yield a domain Ω with no holes

Subdivision $I \subset \mathbb{R}^1 \to$ polytopal complex $\Delta \subset \mathbb{R}^2$

- Δ : full dimensional convex polygons (polytopes) 'glued' together along faces to yield a domain Ω with no holes
- C^r(Δ) : piecewise polynomial functions on Δ which are continuously differentiable of order r (C^r splines)
- $C_d^r(\Delta)$: C^r splines of degree at most d

 $C_d^r(\Delta)$ is a finite dimensional real vector space.

 $C_d^r(\Delta)$ is a finite dimensional real vector space.

 $C_d^r(\Delta)$ is a finite dimensional real vector space.

 $C_d^r(\Delta)$ is a finite dimensional real vector space.

Two central problems in approximation theory:

- 1. Determine dim $C_d^r(\Delta)$
- 2. Construct a 'local' basis of $C_d^r(\Delta)$, if possible

 $C_d^r(\Delta)$ is a finite dimensional real vector space.

Two central problems in approximation theory:

1. Determine dim $C_d^r(\Delta)$

2. Construct a 'local' basis of $C_d^r(\Delta)$, if possible Posed in 1973 by Strang for C^1 splines on triangulations

Translation to algebra

(Algebraic) Spline Criterion:

- If τ is an edge of Δ, l_τ = affine form vanishing on affine span of τ
- Collection {F_σ} (one for each 2-dimensional polytope σ) define F ∈ C^r(Δ) ⇔ for every pair of adjacent polytopes σ₁, σ₂ ∈ Δ₂ with σ₁ ∩ σ₂ = τ, l^{r+1}_τ | (F_{σ1} − F_{σ2})

Translation to algebra

(Algebraic) Spline Criterion:

- If τ is an edge of Δ, l_τ = affine form vanishing on affine span of τ
- Collection {F_σ} (one for each 2-dimensional polytope σ) define F ∈ C^r(Δ) ⇔ for every pair of adjacent polytopes σ₁, σ₂ ∈ Δ₂ with σ₁ ∩ σ₂ = τ, l^{r+1}_τ | (F_{σ1} − F_{σ2})

Translation to algebra

(Algebraic) Spline Criterion:

- If τ is an edge of Δ, l_τ = affine form vanishing on affine span of τ
- Collection {F_σ} (one for each 2-dimensional polytope σ) define F ∈ C^r(Δ) ⇔ for every pair of adjacent polytopes σ₁, σ₂ ∈ Δ₂ with σ₁ ∩ σ₂ = τ, l^{r+1}_τ | (F_{σ1} − F_{σ2})

 $C^{r}(\Delta)$ has structure as a **module** over $\mathbb{R}[x, y]$:

 $C^{r}(\Delta)$ has structure as a **module** over $\mathbb{R}[x, y]$: Given $F, G \in C^{r}(\Delta)$ and $f \in \mathbb{R}[x, y]$:

•
$$F + G \in C^r(\Delta)$$

• $f \cdot F \in C^r(\Delta)$

 $C^{r}(\Delta)$ has structure as a **module** over $\mathbb{R}[x, y]$: Given $F, G \in C^{r}(\Delta)$ and $f \in \mathbb{R}[x, y]$:

- $F + G \in C^r(\Delta)$
- $f \cdot F \in C^r(\Delta)$

 $F \in C_1^0(\mathcal{Q})$

 $C^{r}(\Delta)$ has structure as a **module** over $\mathbb{R}[x, y]$: Given $F, G \in C^{r}(\Delta)$ and $f \in \mathbb{R}[x, y]$:

- $F + G \in C^r(\Delta)$
- $f \cdot F \in C^r(\Delta)$

 $C^{r}(\Delta)$ has structure as a **module** over $\mathbb{R}[x, y]$: Given $F, G \in C^{r}(\Delta)$ and $f \in \mathbb{R}[x, y]$:

- $F + G \in C^r(\Delta)$
- $f \cdot F \in C^r(\Delta)$

Example: continuous splines on a simplicial complex

Example: continuous splines on a simplicial complex

Example: continuous splines on a simplicial complex

$$\begin{pmatrix} F_1 \\ F_2 \\ F_3 \end{pmatrix} \in C^0(\Delta) \iff \exists f_1, f_2, f_3$$

so that
$$F_1 - F_2 = f_1 x$$

$$F_2 - F_3 = f_2(x - y)$$

$$F_3 - F_1 = f_3 y$$

Example, continued: freeness

Three splines in $C^0(\Delta)$:

Example, continued: freeness

Example, continued: freeness

In fact, every spline F ∈ C⁰(∆) can be written uniquely as a polynomial combination of these three splines.

Example, continued: freeness

- In fact, every spline F ∈ C⁰(Δ) can be written uniquely as a polynomial combination of these three splines.
- We say $C^0(\Delta)$ is a **free** $\mathbb{R}[x, y]$ -module

$$C_d^0(\Delta) \cong \mathbb{R}[x, y]_{\leq d} \begin{pmatrix} 1\\1\\1 \end{pmatrix} \oplus \mathbb{R}[x, y]_{\leq d-1} \begin{pmatrix} 0\\x\\y \end{pmatrix} \oplus \mathbb{R}[x, y]_{\leq d-2} \begin{pmatrix} 0\\x^2\\y^2 \end{pmatrix}$$

$$C_d^0(\Delta) \cong \mathbb{R}[x, y]_{\leq d} \begin{pmatrix} 1\\1\\1 \end{pmatrix} \oplus \mathbb{R}[x, y]_{\leq d-1} \begin{pmatrix} 0\\x\\y \end{pmatrix} \oplus \mathbb{R}[x, y]_{\leq d-2} \begin{pmatrix} 0\\x^2\\y^2 \end{pmatrix}$$
$$\mathbb{R}[x, y]_{\leq k} = \operatorname{span}\{x^i y^j : i+j \leq k\}$$
$$\dim \mathbb{R}[x, y]_{\leq k} = \binom{k+2}{2}$$

$$C_d^0(\Delta) \cong \mathbb{R}[x, y]_{\leq d} \begin{pmatrix} 1\\1\\1 \end{pmatrix} \oplus \mathbb{R}[x, y]_{\leq d-1} \begin{pmatrix} 0\\x\\y \end{pmatrix} \oplus \mathbb{R}[x, y]_{\leq d-2} \begin{pmatrix} 0\\x^2\\y^2 \end{pmatrix}$$
$$\mathbb{R}[x, y]_{\leq k} = \operatorname{span}\{x^i y^j : i+j \leq k\}$$
$$\dim \mathbb{R}[x, y]_{\leq k} = \binom{k+2}{2}$$
$$\dim C_d^0(\Delta) = \begin{pmatrix} d+2\\2 \end{pmatrix} + \begin{pmatrix} d+1\\2 \end{pmatrix} + \begin{pmatrix} d\\2 \end{pmatrix}$$

$$C_d^0(\Delta) \cong \mathbb{R}[x, y]_{\leq d} \begin{pmatrix} 1\\1\\1 \end{pmatrix} \oplus \mathbb{R}[x, y]_{\leq d-1} \begin{pmatrix} 0\\x\\y \end{pmatrix} \oplus \mathbb{R}[x, y]_{\leq d-2} \begin{pmatrix} 0\\x^2\\y^2 \end{pmatrix}$$
$$\mathbb{R}[x, y]_{\leq k} = \operatorname{span}\{x^i y^j : i+j \leq k\}$$
$$\dim \mathbb{R}[x, y]_{\leq k} = \binom{k+2}{2}$$
$$\dim C_d^0(\Delta) = \begin{pmatrix} d+2\\2 \end{pmatrix} + \begin{pmatrix} d+1\\2 \end{pmatrix} + \begin{pmatrix} d\\2 \end{pmatrix}$$
$$= \frac{3}{2}d^2 + \frac{3}{2}d + 1 \text{ for } d \geq 0$$

 $\Delta \subset \mathbb{R}^2.$ From commutative algebra

- dim $C_d^r(\Delta)$ is called the **Hilbert function** of $C^r(\Delta)$
- Hilbert function is eventually a polynomial of degree 2 in d, called the Hilbert polynomial of C^r(Δ) and denoted HP(C^r(Δ), d)

 $\Delta \subset \mathbb{R}^2.$ From commutative algebra

- dim $C_d^r(\Delta)$ is called the **Hilbert function** of $C^r(\Delta)$
- Hilbert function is eventually a polynomial of degree 2 in d, called the Hilbert polynomial of C^r(Δ) and denoted HP(C^r(Δ), d)
- The **Hilbert series** is the formal sum $HS(C^{r}(\Delta), t) = \sum_{d=0}^{\infty} \dim C_{d}^{r}(\Delta)t^{d}$; it has the form

$$extsf{HS}(\mathcal{C}^r(\Delta),t)=rac{h(t)}{(1-t)^3}, extsf{ where } h(t)\in\mathbb{Z}[t].$$

 $\Delta \subset \mathbb{R}^2.$ From commutative algebra

- dim $C_d^r(\Delta)$ is called the **Hilbert function** of $C^r(\Delta)$
- Hilbert function is eventually a polynomial of degree 2 in d, called the Hilbert polynomial of C^r(Δ) and denoted HP(C^r(Δ), d)
- The **Hilbert series** is the formal sum $HS(C^{r}(\Delta), t) = \sum_{d=0}^{\infty} \dim C_{d}^{r}(\Delta)t^{d}$; it has the form

$$extsf{HS}(\mathcal{C}^r(\Delta),t)=rac{h(t)}{(1-t)^3}, extsf{ where } h(t)\in\mathbb{Z}[t].$$

Main questions:

• Determine $HS(C^r(\Delta), t)$. (too hard!)

 $\Delta \subset \mathbb{R}^2.$ From commutative algebra

- dim $C_d^r(\Delta)$ is called the **Hilbert function** of $C^r(\Delta)$
- Hilbert function is eventually a polynomial of degree 2 in d, called the Hilbert polynomial of C^r(Δ) and denoted HP(C^r(Δ), d)
- The **Hilbert series** is the formal sum $HS(C^{r}(\Delta), t) = \sum_{d=0}^{\infty} \dim C_{d}^{r}(\Delta)t^{d}$; it has the form

$$extsf{HS}(\mathcal{C}^r(\Delta),t)=rac{h(t)}{(1-t)^3}, extsf{ where } h(t)\in\mathbb{Z}[t].$$

Main questions:

- Determine $HS(C^r(\Delta), t)$. (too hard!)
- What is a formula for $HP(C^r(\Delta), d)$?

 $\Delta \subset \mathbb{R}^2.$ From commutative algebra

- dim $C_d^r(\Delta)$ is called the **Hilbert function** of $C^r(\Delta)$
- Hilbert function is eventually a polynomial of degree 2 in d, called the Hilbert polynomial of C^r(Δ) and denoted HP(C^r(Δ), d)
- The **Hilbert series** is the formal sum $HS(C^{r}(\Delta), t) = \sum_{d=0}^{\infty} \dim C_{d}^{r}(\Delta)t^{d}$; it has the form

$$extsf{HS}(C^r(\Delta),t)=rac{h(t)}{(1-t)^3}, extsf{ where } h(t)\in \mathbb{Z}[t].$$

Main questions:

- Determine $HS(C^r(\Delta), t)$. (too hard!)
- What is a formula for $HP(C^r(\Delta), d)$?
- How large must d be so that dim $C_d^r(\Delta) = HP(C^r(\Delta), d)$?

Conjecture (at least 30 years old) dim $C_d^1(\Delta) = HP(C^1(\Delta), d)$ for $d \ge 3$.

Conjecture (at least 30 years old)

dim $C_d^1(\Delta) = HP(C^1(\Delta), d)$ for $d \ge 3$. Only dim $C_2^1(\Delta)$ can differ from expected dimension formula

If $\Delta \subset \mathbb{R}^2$ is a triangulation with v vertices, then dim $C_1^0(\Delta) = v$.

If $\Delta \subset \mathbb{R}^2$ is a triangulation with v vertices, then dim $C_1^0(\Delta) = v$.

If $\Delta \subset \mathbb{R}^2$ is a triangulation with v vertices, then dim $C_1^0(\Delta) = v$.

If $\Delta \subset \mathbb{R}^2$ is a triangulation with v vertices, then dim $C_1^0(\Delta) = v$.

If $\Delta \subset \mathbb{R}^2$ is a triangulation with v vertices, then dim $C_1^0(\Delta) = v$.

A basis for $C_1^0(\Delta)$ is given by Courant functions, which take a value of 1 at a chosen vertex and 0 at all other vertices.

No dependence on geometry!

- No dependence on geometry!
- ▶ [Billera '89]: If $\Delta \subset \mathbb{R}^2$ is a triangulation of a domain Ω without holes then
 - $C^0(\Delta)$ is a free module over $\mathbb{R}[x, y]$
 - dim $C^0_d(\Delta)$ is completely combinatorial

A basis for $C_1^0(\Delta)$ is given by Courant functions, which take a value of 1 at a chosen vertex and 0 at all other vertices.

- No dependence on geometry!
- ▶ [Billera '89]: If $\Delta \subset \mathbb{R}^2$ is a triangulation of a domain Ω without holes then
 - $C^0(\Delta)$ is a free module over $\mathbb{R}[x, y]$
 - dim $C^0_d(\Delta)$ is completely combinatorial

Generalizes to arbitrary dimensions.

PL functions depend on geometry

If $\Delta \subset \mathbb{R}^2$ is a polytopal complex, dim $C_1^0(\Delta)$ depends on geometry of Δ .
PL functions depend on geometry

If $\Delta \subset \mathbb{R}^2$ is a polytopal complex, dim $C_1^0(\Delta)$ depends on geometry of Δ .

- ▶ A trivial PL function on $\Delta \subset \mathbb{R}^2$ has the same linear function on each face.
- dim(trivial splines on Δ) = 3 always, with basis 1, x, y.

 Nontrivial PL function on has at least two different linear functions on different faces.

- Nontrivial PL function on has at least two different linear functions on different faces.
- One **nontrivial** PL function on Q_1 , whose graph is below:

When you move to Q_2 you lose this function!

- Nontrivial PL function on has at least two different linear functions on different faces.
- One **nontrivial** PL function on Q_1 , whose graph is below:

When you move to Q_2 you lose this function!

 In general, computing C⁰₁(Δ) entails determining when edges of Δ come from projecting a polyhedral surface

- Nontrivial PL function on has at least two different linear functions on different faces.
- One **nontrivial** PL function on Q_1 , whose graph is below:

When you move to Q_2 you lose this function!

- In general, computing C⁰₁(Δ) entails determining when edges of Δ come from projecting a polyhedral surface
- Relates to rigidity theory, dates back to Maxwell in 1860s

Nonfreeness for Polytopal Complexes [D. '12]

Nonfreeness for Polytopal Complexes [D. '12]

Nonfreeness for Polytopal Complexes [D. '12]

Nonfreeness for Polytopal Complexes [D. '12]

Nonfreeness for Polytopal Complexes [D. '12]

If Δ is a polytopal subdivision of a planar domain Ω without holes, $C^{0}(\Delta)$ need not be free [D. '12].

Persistence of 'extra' PL function determines freeness.

Planar simplicial splines of large degree

Planar simplicial dimension [Alfeld-Schumaker '90] If $\Delta \subset \mathbb{R}^2$ is a simply connected triangulation and $d \ge 3r + 1$,

$$\dim C_d^r(\Delta) = f_2 \binom{d+2}{2} - f_1^0 \left(\binom{d+2}{2} - \binom{d-r+1}{2} \right) + \sigma,$$

- $f_i(f_i^0)$ is the number of *i*-faces (interior *i*-faces).
- σ = constant obtained as a sum of contributions from each interior vertex.

Planar non-simplicial splines of large degree

Planar non-simplicial dimension [McDonald-Schenck '09]

If $\Delta \subset \mathbb{R}^2$ is a simply connected polytopal complex and $d \gg 0$,

$$\dim C_d^r(\Delta) = f_2 \binom{d+2}{2} - f_1^0 \left(\binom{d+2}{2} - \binom{d-r+1}{2} \right) \\ + \sigma + \sigma',$$

- $f_i(f_i^0)$ is the number of *i*-faces (interior *i*-faces).
- $\sigma = sum of constant contributions from interior vertices$
- $\blacktriangleright \ \sigma' = {\rm sum}$ of constant contributions from 'missing' vertices

How large must d be in order for $HP(C^{r}(\Delta), d) = \dim C_{d}^{r}(\Delta)$?

How large must d be in order for $HP(C^r(\Delta), d) = \dim C^r_d(\Delta)$?

Theorem: Using McDonald-Schenck Formula [D. '18]

 $\Delta \subset \mathbb{R}^2$ a planar polytopal complex. Let F = maximum number of edges appearing in a polytope of Δ . Then dim $C'_d(\Delta) = HP(C^r(\Delta), d)$ for $d \ge (2F - 1)(r + 1) - 1$.

How large must d be in order for $HP(C^{r}(\Delta), d) = \dim C_{d}^{r}(\Delta)$?

Theorem: Using McDonald-Schenck Formula [D. '18] $\Delta \subset \mathbb{R}^2$ a planar polytopal complex. Let F = maximum number of edges appearing in a polytope of Δ . Then dim $C'_d(\Delta) = HP(C^r(\Delta), d)$ for $d \ge (2F - 1)(r + 1) - 1$.

Worst case examples indicate bound in theorem is off by a factor of about two (F is necessary!)

How large must d be in order for $HP(C^{r}(\Delta), d) = \dim C_{d}^{r}(\Delta)$?

Theorem: Using McDonald-Schenck Formula [D. '18] $\Delta \subset \mathbb{R}^2$ a planar polytopal complex. Let F = maximum number of edges appearing in a polytope of Δ . Then dim $C'_d(\Delta) = HP(C^r(\Delta), d)$ for $d \ge (2F - 1)(r + 1) - 1$.

- Worst case examples indicate bound in theorem is off by a factor of about two (F is necessary!)
- Best known bounds in simplicial case are also off by a factor of 1.5

How large must d be in order for $HP(C^{r}(\Delta), d) = \dim C_{d}^{r}(\Delta)$?

Theorem: Using McDonald-Schenck Formula [D. '18] $\Delta \subset \mathbb{R}^2$ a planar polytopal complex. Let F = maximum number of edges appearing in a polytope of Δ . Then dim $C'_d(\Delta) = HP(C^r(\Delta), d)$ for $d \ge (2F - 1)(r + 1) - 1$.

- Worst case examples indicate bound in theorem is off by a factor of about two (F is necessary!)
- Best known bounds in simplicial case are also off by a factor of 1.5
- Proof of theorem uses notion of regularity from algebraic geometry

Curved Partitions

More general problem: Compute dim $C_d^r(\Delta)$ where Δ is a planar partition whose arcs consist of irreducible algebraic curves.

Curved Partitions

More general problem: Compute dim $C_d^r(\Delta)$ where Δ is a planar partition whose arcs consist of irreducible algebraic curves.

Curved Partitions

More general problem: Compute dim $C_d^r(\Delta)$ where Δ is a planar partition whose arcs consist of irreducible algebraic curves.

Call functions in $C^r(\Delta)$ semi-algebraic splines since they are defined over regions given by polynomial inequalities, or semi-algebraic sets.

Graph of a spline in $C_3^0(\Delta)$

Graph of a spline in $C_6^1(\Delta)$

Graph of a spline in $C_6^1(\Delta)$

 First definitions in this context made in [Wang '75] - algebraic criterion for splines carries over verbatim

Graph of a spline in $C_6^1(\Delta)$

- First definitions in this context made in [Wang '75] algebraic criterion for splines carries over verbatim
- Recent work suggests semi-algebraic splines may be increasingly useful in finite element method [Davydov-Kostin-Saeed '16]

- Focus on $\Delta \subset \mathbb{R}^2$ with single interior vertex at (0,0).
- Let Δ_L be the subdivision formed by replacing curves by tangent rays at origin

- Focus on $\Delta \subset \mathbb{R}^2$ with single interior vertex at (0,0).
- Let Δ_L be the subdivision formed by replacing curves by tangent rays at origin

- Focus on $\Delta \subset \mathbb{R}^2$ with single interior vertex at (0,0).
- Let Δ_L be the subdivision formed by replacing curves by tangent rays at origin

Tangent rays

- Focus on $\Delta \subset \mathbb{R}^2$ with single interior vertex at (0,0).
- Let Δ_L be the subdivision formed by replacing curves by tangent rays at origin

Theorem: Linearizing dim $\overline{C_d^r}(\Delta)$ [D.-Sottile-Sun '17]

Let Δ consist of *n* irreducible curves of degree d_1, \ldots, d_n meeting at (0,0) with distinct tangents and no common zero in $\mathbb{P}^2(\mathbb{C})$ other than (0,0). Then, for $d \gg 0$,

$$\dim C_d^r(\Delta) = \dim C_d^r(\Delta_L) + \sum_{i=1}^n \left(\binom{d+2-d_i(r+1)}{2} - \binom{d-r-1}{2} \right)$$

Theorem: Linearizing dim $C_d^r(\Delta)$ [D.-Sottile-Sun '17]

Let Δ consist of *n* irreducible curves of degree d_1, \ldots, d_n meeting at (0,0) with distinct tangents and no common zero in $\mathbb{P}^2(\mathbb{C})$ other than (0,0). Then, for $d \gg 0$,

$$\dim C_d^r(\Delta) = \dim C_d^r(\Delta_L) \\ + \sum_{i=1}^n \left(\binom{d+2-d_i(r+1)}{2} - \binom{d-r-1}{2} \right)$$

Not true if tangents are not distinct!

Theorem: Linearizing dim $\overline{C_d^r}(\Delta)$ [D.-Sottile-Sun '17]

Let Δ consist of *n* irreducible curves of degree d_1, \ldots, d_n meeting at (0,0) with distinct tangents and no common zero in $\mathbb{P}^2(\mathbb{C})$ other than (0,0). Then, for $d \gg 0$,

$$\dim C_d^r(\Delta) = \dim C_d^r(\Delta_L) + \sum_{i=1}^n \left(\binom{d+2-d_i(r+1)}{2} - \binom{d-r-1}{2} \right)$$

- Not true if tangents are not distinct!
- Proof uses saturation and toric degenerations (from commutative algebra)

Theorem: Linearizing dim $C_d^r(\Delta)$ [D.-Sottile-Sun '17]

Let Δ consist of *n* irreducible curves of degree d_1, \ldots, d_n meeting at (0,0) with distinct tangents and no common zero in $\mathbb{P}^2(\mathbb{C})$ other than (0,0). Then, for $d \gg 0$,

$$\dim C_d^r(\Delta) = \dim C_d^r(\Delta_L) + \sum_{i=1}^n \left(\binom{d+2-d_i(r+1)}{2} - \binom{d-r-1}{2} \right)$$

- Not true if tangents are not distinct!
- Proof uses saturation and toric degenerations (from commutative algebra)
- Bounds on *d* for when equality holds are also considered, using regularity

THANK YOU!

References I

Peter Alfeld and Larry L. Schumaker.

On the dimension of bivariate spline spaces of smoothness r and degree d = 3r + 1. Numer. Math., 57(6-7):651-661, 1990.

Louis J. Billera.

The algebra of continuous piecewise polynomials. *Adv. Math.*, 76(2):170–183, 1989.

Oleg Davydov, Georgy Kostin, and Abid Saeed. Polynomial finite element method for domains enclosed by piecewise conics. *Comput. Aided Geom. Design*, 45:48–72, 2016.

Michael DiPasquale.

Shellability and freeness of continuous splines. J. Pure Appl. Algebra, 216(11):2519–2523, 2012.

Michael DiPasquale, Frank Sottile, and Lanyin Sun. Semialgebraic splines. *Comput. Aided Geom. Design.* 55:29–47, 2017.

Michael DiPasquale.

Dimension of mixed splines on polytopal cells.

Math. Comp., 87(310):905-939, 2018.

References II

Daniel R. Grayson and Michael E. Stillman. Macaulay2, a software system for research in algebraic geometry Available at http://www.math.uiuc.edu/Macaulay2/.

Terry McDonald and Hal Schenck. Piecewise polynomials on polyhedral complexes. *Adv. in Appl. Math.*, 42(1):82–93, 2009.

Gilbert Strang.

Piecewise polynomials and the finite element method. *Bull. Amer. Math. Soc.* 79:1128–1137, 1973.

Ren Hong Wang.

Structure of multivariate splines, and interpolation. *Acta Math. Sinica* 18(2): 91–106, 1975.
Long standing open question (planar triangulations): Compute dim C¹₃(Δ)

- Long standing open question (planar triangulations): Compute dim C¹₃(Δ)
- More generally (planar triangulations): Compute dim C^r_d(Δ) for r + 1 ≤ d ≤ 3r + 1

- Long standing open question (planar triangulations): Compute dim C¹₃(Δ)
- More generally (planar triangulations): Compute dim C^r_d(Δ) for r + 1 ≤ d ≤ 3r + 1
- More generally (planar polytopal complexes): Compute dim C'_d(Δ) for r + 1 ≤ d ≤ (2F − 1)(r + 1) (F maximum number of edges in a two-cell)

- Long standing open question (planar triangulations): Compute dim C¹₃(Δ)
- More generally (planar triangulations): Compute dim C^r_d(Δ) for r + 1 ≤ d ≤ 3r + 1
- More generally (planar polytopal complexes): Compute dim C^r_d(Δ) for r + 1 ≤ d ≤ (2F − 1)(r + 1) (F maximum number of edges in a two-cell)
- If Δ ⊂ ℝ³, dim C^r_d(Δ) is not known for d ≫ 0 except for r = 1, d ≥ 8 on generic triangulations [Alfeld-Schumaker-Whitely '93]. (connects to unsolved problems in algebraic geometry)

 Bounds on dim C^r_d(Δ) for Δ ⊂ ℝ³ [Mourrain-Villamizar '15] (most recent). Improve these!

- Bounds on dim C^r_d(Δ) for Δ ⊂ ℝ³ [Mourrain-Villamizar '15] (most recent). Improve these!
- Characterize freeness $C^r(\Delta)$.

- Bounds on dim C^r_d(Δ) for Δ ⊂ ℝ³ [Mourrain-Villamizar '15] (most recent). Improve these!
- Characterize freeness $C^r(\Delta)$.
- Compute dim C^r_d(∆) for semi-algebraic splines on more general planar partitions for d ≫ 0

Cross-Cut Partitions

A partition of a domain D is called a *cross-cut partition* if the union of its two-cells are the complement of a line arrangement.

Cross-Cut Partitions

A partition of a domain *D* is called a *cross-cut partition* if the union of its two-cells are the complement of a line arrangement.

Cross-Cut Partitions

A partition of a domain D is called a *cross-cut partition* if the union of its two-cells are the complement of a line arrangement.

- ▶ Basis for $C'_d(\Delta)$ and dim $C'_d(\Delta)$ [Chui-Wang '83]
- $C^{r}(\Delta)$ is free for any r [Schenck '97]

 \mathcal{A}_t = union of planes defined by vanishing of the nine linear forms:

x y
$$x+y+z$$
 $2x+y+z$ $(1+t)x+(3+t)z$

z 2x+3y+z 2x+3y+4z (1+t)x+(2+t)y+(3+t)z

 \mathcal{A}_t = union of planes defined by vanishing of the nine linear forms:

- x y x+y+z 2x+y+z (1+t)x+(3+t)z
 - z 2x+3y+z 2x+3y+4z (1+t)x+(2+t)y+(3+t)z

 \mathcal{A}_t has six triple lines

 \mathcal{A}_t = union of planes defined by vanishing of the nine linear forms:

x y x+y+z 2x+y+z (1+t)x+(3+t)zz 2x+3y+z 2x+3y+4z (1+t)x+(2+t)y+(3+t)z

 A_t has six triple lines which lie on a cone only if t = 0

 \mathcal{A}_t = union of planes defined by vanishing of the nine linear forms:

x y x+y+z 2x+y+z (1+t)x+(3+t)zz 2x+3y+z 2x+3y+4z (1+t)x+(2+t)y+(3+t)z

 A_t has six triple lines which lie on a cone only if t = 0• Let Δ_t be the polytopal complex formed by dividing $[-1,1] \times [-1,1] \times [-1,1]$ by A_t (there are 62 polytopes)

 \mathcal{A}_t = union of planes defined by vanishing of the nine linear forms:

x y x+y+z 2x+y+z (1+t)x+(3+t)zz 2x+3y+z 2x+3y+4z (1+t)x+(2+t)y+(3+t)z

 A_t has six triple lines which lie on a cone only if t = 0

Let Δ_t be the polytopal complex formed by dividing
 [-1,1] × [-1,1] × [-1,1] by A_t (there are 62 polytopes)
C⁰(Δ_t) is free if and only if t ≠ 0!