Commutative Algebra and Piecewise Polynomials

Michael DiPasquale

Marquette University
Colloquium

Piecewise Polynomials

Spline

A piecewise polynomial function, continuously differentiable to some order.

Some Context: Splines in Calculus 1

Low degree splines are used in Calc 1 to approximate integrals.

Some Context: Splines in Calculus 1

Low degree splines are used in Calc 1 to approximate integrals.

Some Context: Splines in Calculus 1

Low degree splines are used in Calc 1 to approximate integrals.

Some Context: Splines in Calculus 1

Low degree splines are used in Calc 1 to approximate integrals.

Origin

Term spline originated in shipbuilding - referred to flexible wooden strips anchored at several points.

Source: http://technologycultureboats.blogspot.com/2014/12/gustave-caillebotte-and-curves.htm/

Current applications

- Computer-Aided Geometric Design (CAGD): splines used to create models by interpolating datapoints.

Source: http://www.tsplines.com/products/what-are-t-splines.htm/

Current applications

- Computer-Aided Geometric Design (CAGD): splines used to create models by interpolating datapoints.

Source: http://www.tsplines.com/products/what-are-t-splines.html

- Finite Element Method (FEM): best approximation to a solution of a partial differential equation (PDE) is obtained in a spline space
- FEM especially useful for PDEs in engineering and mathematical physics

Univariate splines

Most widely studied case: approximation of a function $f(x)$ over an interval $\Delta=[a, b] \subset \mathbb{R}$ by C^{r} piecewise polynomials.

Univariate splines

Most widely studied case: approximation of a function $f(x)$ over an interval $\Delta=[a, b] \subset \mathbb{R}$ by C^{r} piecewise polynomials.

- Subdivide $\Delta=[a, b]$ into subintervals:

$$
\Delta=\left[a_{0}, a_{1}\right] \cup\left[a_{1}, a_{2}\right] \cup \cdots \cup\left[a_{n-1}, a_{n}\right]
$$

- Find a basis for the vector space $C_{d}^{r}(\Delta)$ of C^{r} piecewise polynomial functions on Δ with degree at most d (e.g. B-splines)
- Find best approximation to $f(x)$ in $C_{d}^{r}(\Delta)$

Example: two subintervals

$$
\begin{aligned}
\Delta=\left[a_{0}, a_{1}\right] \cup\left[a_{1}, a_{2}\right] & \left(\text { assume WLOG } a_{1}=0\right) \\
\qquad\left(f_{1}, f_{2}\right) \in C_{d}^{r}(\Delta) & \Longleftrightarrow f_{1}^{(i)}(0)=f_{2}^{(i)}(0) \text { for } 0 \leq i \leq r \\
& \Longleftrightarrow x^{r+1} \mid\left(f_{2}-f_{1}\right) \\
& \Longleftrightarrow\left(f_{2}-f_{1}\right) \in\left\langle x^{r+1}\right\rangle
\end{aligned}
$$

Example: two subintervals

$$
\begin{aligned}
\Delta=\left[a_{0}, a_{1}\right] \cup\left[a_{1}, a_{2}\right] & \left(\text { assume WLOG } a_{1}=0\right) \\
\left(f_{1}, f_{2}\right) \in C_{d}^{r}(\Delta) & \Longleftrightarrow f_{1}^{(i)}(0)=f_{2}^{(i)}(0) \text { for } 0 \leq i \leq r \\
& \Longleftrightarrow x^{r+1} \mid\left(f_{2}-f_{1}\right) \\
& \Longleftrightarrow\left(f_{2}-f_{1}\right) \in\left\langle x^{r+1}\right\rangle
\end{aligned}
$$

Even more explicitly:

- $f_{1}(x)=b_{0}+b_{1} x+\cdots+b_{d} x^{d}$
- $f_{2}(x)=c_{0}+c_{1} x+\cdots+c_{d} x^{d}$
- $\left(f_{1}, f_{2}\right) \in C_{d}^{r}(\Delta) \Longleftrightarrow b_{0}=c_{0}, \ldots, b_{r}=c_{r}$.

Example: two subintervals

$$
\begin{aligned}
\Delta=\left[a_{0}, a_{1}\right] \cup\left[a_{1}, a_{2}\right] & \left(\text { assume WLOG } a_{1}=0\right) \\
\left(f_{1}, f_{2}\right) \in C_{d}^{r}(\Delta) & \Longleftrightarrow f_{1}^{(i)}(0)=f_{2}^{(i)}(0) \text { for } 0 \leq i \leq r \\
& \Longleftrightarrow x^{r+1} \mid\left(f_{2}-f_{1}\right) \\
& \Longleftrightarrow\left(f_{2}-f_{1}\right) \in\left\langle x^{r+1}\right\rangle
\end{aligned}
$$

Even more explicitly:

- $f_{1}(x)=b_{0}+b_{1} x+\cdots+b_{d} x^{d}$
- $f_{2}(x)=c_{0}+c_{1} x+\cdots+c_{d} x^{d}$
- $\left(f_{1}, f_{2}\right) \in C_{d}^{r}(\Delta) \Longleftrightarrow b_{0}=c_{0}, \ldots, b_{r}=c_{r}$.

$$
\operatorname{dim} C_{d}^{r}(\Delta)= \begin{cases}d+1 & \text { if } d \leq r \\ (d+1)+(d-r) & \text { if } d>r\end{cases}
$$

Note: $\operatorname{dim} C_{d}^{r}(\Delta)$ is polynomial in d for $d>r$.

Dimension two

Subdivision $I \subset \mathbb{R}^{1} \rightarrow$ polytopal complex $\Delta \subset \mathbb{R}^{2}$

Dimension two

Subdivision $I \subset \mathbb{R}^{1} \rightarrow$ polytopal complex $\Delta \subset \mathbb{R}^{2}$

A polytopal complex \mathcal{Q}

Dimension two

Subdivision $I \subset \mathbb{R}^{1} \rightarrow$ polytopal complex $\Delta \subset \mathbb{R}^{2}$

A polytopal complex \mathcal{Q}

- Δ : full dimensional convex polygons (polytopes) 'glued' together along faces to yield a domain Ω with no holes

Dimension two

Subdivision $I \subset \mathbb{R}^{1} \rightarrow$ polytopal complex $\Delta \subset \mathbb{R}^{2}$

A polytopal complex \mathcal{Q}

- Δ : full dimensional convex polygons (polytopes) 'glued' together along faces to yield a domain Ω with no holes
- $C^{r}(\Delta)$: piecewise polynomial functions on Δ which are continuously differentiable of order r (C^{r} splines)
- $C_{d}^{r}(\Delta): C^{r}$ splines of degree at most d

The dimension question

$C_{d}^{r}(\Delta)$ is a finite dimensional real vector space.

The dimension question

$C_{d}^{r}(\Delta)$ is a finite dimensional real vector space.

The dimension question

$C_{d}^{r}(\Delta)$ is a finite dimensional real vector space.

A basis for $C_{1}^{0}(\mathcal{Q})$ is shown at right. $\operatorname{dim}_{\mathbb{R}} C_{1}^{0}(\mathcal{Q})=4$

The dimension question

$C_{d}^{r}(\Delta)$ is a finite dimensional real vector space.

A basis for $C_{1}^{0}(\mathcal{Q})$ is shown at right. $\operatorname{dim}_{\mathbb{R}} C_{1}^{0}(\mathcal{Q})=4$

Two central problems in approximation theory:

1. Determine $\operatorname{dim} C_{d}^{r}(\Delta)$
2. Construct a 'local' basis of $C_{d}^{r}(\Delta)$, if possible

The dimension question

$C_{d}^{r}(\Delta)$ is a finite dimensional real vector space.

A basis for $C_{1}^{0}(\mathcal{Q})$ is shown at right. $\operatorname{dim}_{\mathbb{R}} C_{1}^{0}(\mathcal{Q})=4$

Two central problems in approximation theory:

1. Determine $\operatorname{dim} C_{d}^{r}(\Delta)$
2. Construct a 'local' basis of $C_{d}^{r}(\Delta)$, if possible

Posed in 1973 by Strang for C^{1} splines on triangulations

Translation to algebra

(Algebraic) Spline Criterion:

- If τ is an edge of $\Delta, I_{\tau}=$ affine form vanishing on affine span of τ
- Collection $\left\{F_{\sigma}\right\}$ (one for each 2-dimensional polytope σ) define $F \in C^{r}(\Delta) \Longleftrightarrow$ for every pair of adjacent polytopes $\sigma_{1}, \sigma_{2} \in \Delta_{2}$ with $\sigma_{1} \cap \sigma_{2}=\tau, I_{\tau}^{r+1} \mid\left(F_{\sigma_{1}}-F_{\sigma_{2}}\right)$

Translation to algebra

(Algebraic) Spline Criterion:

- If τ is an edge of $\Delta, I_{\tau}=$ affine form vanishing on affine span of τ
- Collection $\left\{F_{\sigma}\right\}$ (one for each 2-dimensional polytope σ) define $F \in C^{r}(\Delta) \Longleftrightarrow$ for every pair of adjacent polytopes $\sigma_{1}, \sigma_{2} \in \Delta_{2}$ with $\sigma_{1} \cap \sigma_{2}=\tau, I_{\tau}^{r+1} \mid\left(F_{\sigma_{1}}-F_{\sigma_{2}}\right)$

The polytopal complex \mathcal{Q}

Translation to algebra

(Algebraic) Spline Criterion:

- If τ is an edge of $\Delta, I_{\tau}=$ affine form vanishing on affine span of τ
- Collection $\left\{F_{\sigma}\right\}$ (one for each 2-dimensional polytope σ) define $F \in C^{r}(\Delta) \Longleftrightarrow$ for every pair of adjacent polytopes $\sigma_{1}, \sigma_{2} \in \Delta_{2}$ with $\sigma_{1} \cap \sigma_{2}=\tau, I_{\tau}^{r+1} \mid\left(F_{\sigma_{1}}-F_{\sigma_{2}}\right)$

Algebraic Structure of $C^{r}(\Delta)$

$C^{r}(\Delta)$ has structure as a module over $\mathbb{R}[x, y]$:

Algebraic Structure of $C^{r}(\Delta)$

$C^{r}(\Delta)$ has structure as a module over $\mathbb{R}[x, y]$:
Given $F, G \in C^{r}(\Delta)$ and $f \in \mathbb{R}[x, y]$:

- $F+G \in C^{r}(\Delta)$
- $f \cdot F \in C^{r}(\Delta)$

Algebraic Structure of $C^{r}(\Delta)$

$C^{r}(\Delta)$ has structure as a module over $\mathbb{R}[x, y]$:
Given $F, G \in C^{r}(\Delta)$ and $f \in \mathbb{R}[x, y]$:

- $F+G \in C^{r}(\Delta)$
- $f \cdot F \in C^{r}(\Delta)$

$$
F \in C_{1}^{0}(\mathcal{Q})
$$

Algebraic Structure of $C^{r}(\Delta)$

$C^{r}(\Delta)$ has structure as a module over $\mathbb{R}[x, y]$:
Given $F, G \in C^{r}(\Delta)$ and $f \in \mathbb{R}[x, y]$:

- $F+G \in C^{r}(\Delta)$
- $f \cdot F \in C^{r}(\Delta)$

$F \in C_{1}^{0}(\mathcal{Q})$

Algebraic Structure of $C^{r}(\Delta)$

$C^{r}(\Delta)$ has structure as a module over $\mathbb{R}[x, y]$:
Given $F, G \in C^{r}(\Delta)$ and $f \in \mathbb{R}[x, y]$:

- $F+G \in C^{r}(\Delta)$
- $f \cdot F \in C^{r}(\Delta)$

$F \in C_{1}^{0}(\mathcal{Q})$

Example: continuous splines on a simplicial complex

Example: continuous splines on a simplicial complex

Example: continuous splines on a simplicial complex

$$
\begin{gathered}
\left(\begin{array}{c}
F_{1} \\
F_{2} \\
F_{3}
\end{array}\right) \in C^{0}(\Delta) \Longleftrightarrow \exists f_{1}, f_{2}, f_{3} \\
\text { so that } \\
F_{1}-F_{2}=f_{1} x \\
F_{2}-F_{3}=f_{2}(x-y) \\
F_{3}-F_{1}=f_{3} y
\end{gathered}
$$

Example, continued: freeness

Three splines in $C^{0}(\Delta)$:

Example, continued: freeness

Three splines in $C^{0}(\Delta)$:

Example, continued: freeness

Three splines in $C^{0}(\Delta)$:
K

- In fact, every spline $F \in C^{0}(\Delta)$ can be written uniquely as a polynomial combination of these three splines.

Example, continued: freeness

Three splines in $C^{0}(\Delta)$:

- In fact, every spline $F \in C^{0}(\Delta)$ can be written uniquely as a polynomial combination of these three splines.
- We say $C^{0}(\Delta)$ is a free $\mathbb{R}[x, y]$-module

Example, continued: dimension computation

$$
C_{d}^{0}(\Delta) \cong \mathbb{R}[x, y]_{\leq d}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \oplus \mathbb{R}[x, y]_{\leq d-1}\left(\begin{array}{c}
0 \\
x \\
y
\end{array}\right) \oplus \mathbb{R}[x, y]_{\leq d-2}\left(\begin{array}{c}
0 \\
x^{2} \\
y^{2}
\end{array}\right)
$$

Example, continued: dimension computation

$$
\begin{gathered}
C_{d}^{0}(\Delta) \cong \mathbb{R}[x, y]_{\leq d}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \oplus \mathbb{R}[x, y]_{\leq d-1}\left(\begin{array}{c}
0 \\
x \\
y
\end{array}\right) \oplus \mathbb{R}[x, y]_{\leq d-2}\left(\begin{array}{c}
0 \\
x^{2} \\
y^{2}
\end{array}\right) \\
\mathbb{R}[x, y]_{\leq k}=\operatorname{span}\left\{x^{i} y^{j}: i+j \leq k\right\} \\
\operatorname{dim} \mathbb{R}[x, y]_{\leq k}=\binom{k+2}{2}
\end{gathered}
$$

Example, continued: dimension computation

$$
\begin{gathered}
C_{d}^{0}(\Delta) \cong \mathbb{R}[x, y]_{\leq d}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \oplus \mathbb{R}[x, y]_{\leq d-1}\left(\begin{array}{l}
0 \\
x \\
y
\end{array}\right) \oplus \mathbb{R}[x, y]_{\leq d-2}\left(\begin{array}{c}
0 \\
x^{2} \\
y^{2}
\end{array}\right) \\
\mathbb{R}[x, y]_{\leq k}=\operatorname{span}\left\{x^{i} y y^{j}: i+j \leq k\right\} \\
\operatorname{dim} \mathbb{R}[x, y]_{\leq k}=\binom{k+2}{2} \\
\operatorname{dim} C_{d}^{0}(\Delta)=\binom{d+2}{2}+\binom{d+1}{2}+\binom{d}{2}
\end{gathered}
$$

Example, continued: dimension computation

$$
\begin{gathered}
C_{d}^{0}(\Delta) \cong \mathbb{R}[x, y]_{\leq d}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \oplus \mathbb{R}[x, y]_{\leq d-1}\left(\begin{array}{l}
0 \\
x \\
y
\end{array}\right) \oplus \mathbb{R}[x, y]_{\leq d-2}\left(\begin{array}{c}
0 \\
x^{2} \\
y^{2}
\end{array}\right) \\
\mathbb{R}[x, y]_{\leq k}=\operatorname{span}\left\{x^{i} y^{j}: i+j \leq k\right\} \\
\operatorname{dim} \mathbb{R}[x, y]_{\leq k}=\binom{k+2}{2} \\
\operatorname{dim} C_{d}^{0}(\Delta)=\binom{d+2}{2}+\binom{d+1}{2}+\binom{d}{2} \\
=\frac{3}{2} d^{2}+\frac{3}{2} d+1 \text { for } d \geq 0
\end{gathered}
$$

Hilbert series and polynomial

$\Delta \subset \mathbb{R}^{2}$. From commutative algebra

- $\operatorname{dim} C_{d}^{r}(\Delta)$ is called the Hilbert function of $C^{r}(\Delta)$
- Hilbert function is eventually a polynomial of degree 2 in d, called the Hilbert polynomial of $C^{r}(\Delta)$ and denoted $H P\left(C^{r}(\Delta), d\right)$

Hilbert series and polynomial

$\Delta \subset \mathbb{R}^{2}$. From commutative algebra

- $\operatorname{dim} C_{d}^{r}(\Delta)$ is called the Hilbert function of $C^{r}(\Delta)$
- Hilbert function is eventually a polynomial of degree 2 in d, called the Hilbert polynomial of $C^{r}(\Delta)$ and denoted $H P\left(C^{r}(\Delta), d\right)$
- The Hilbert series is the formal sum $H S\left(C^{r}(\Delta), t\right)=\sum_{d=0}^{\infty} \operatorname{dim} C_{d}^{r}(\Delta) t^{d}$; it has the form

$$
H S\left(C^{r}(\Delta), t\right)=\frac{h(t)}{(1-t)^{3}}, \text { where } h(t) \in \mathbb{Z}[t]
$$

Hilbert series and polynomial

$\Delta \subset \mathbb{R}^{2}$. From commutative algebra

- $\operatorname{dim} C_{d}^{r}(\Delta)$ is called the Hilbert function of $C^{r}(\Delta)$
- Hilbert function is eventually a polynomial of degree 2 in d, called the Hilbert polynomial of $C^{r}(\Delta)$ and denoted $H P\left(C^{r}(\Delta), d\right)$
- The Hilbert series is the formal sum $H S\left(C^{r}(\Delta), t\right)=\sum_{d=0}^{\infty} \operatorname{dim} C_{d}^{r}(\Delta) t^{d}$; it has the form

$$
H S\left(C^{r}(\Delta), t\right)=\frac{h(t)}{(1-t)^{3}}, \text { where } h(t) \in \mathbb{Z}[t]
$$

Main questions:

- Determine $\operatorname{HS}\left(C^{r}(\Delta), t\right)$. (too hard!)

Hilbert series and polynomial

$\Delta \subset \mathbb{R}^{2}$. From commutative algebra

- $\operatorname{dim} C_{d}^{r}(\Delta)$ is called the Hilbert function of $C^{r}(\Delta)$
- Hilbert function is eventually a polynomial of degree 2 in d, called the Hilbert polynomial of $C^{r}(\Delta)$ and denoted $H P\left(C^{r}(\Delta), d\right)$
- The Hilbert series is the formal sum $H S\left(C^{r}(\Delta), t\right)=\sum_{d=0}^{\infty} \operatorname{dim} C_{d}^{r}(\Delta) t^{d}$; it has the form

$$
H S\left(C^{r}(\Delta), t\right)=\frac{h(t)}{(1-t)^{3}}, \text { where } h(t) \in \mathbb{Z}[t]
$$

Main questions:

- Determine $\operatorname{HS}\left(C^{r}(\Delta), t\right)$. (too hard!)
- What is a formula for $\operatorname{HP}\left(C^{r}(\Delta), d\right)$?

Hilbert series and polynomial

$\Delta \subset \mathbb{R}^{2}$. From commutative algebra

- $\operatorname{dim} C_{d}^{r}(\Delta)$ is called the Hilbert function of $C^{r}(\Delta)$
- Hilbert function is eventually a polynomial of degree 2 in d, called the Hilbert polynomial of $C^{r}(\Delta)$ and denoted $H P\left(C^{r}(\Delta), d\right)$
- The Hilbert series is the formal sum $H S\left(C^{r}(\Delta), t\right)=\sum_{d=0}^{\infty} \operatorname{dim} C_{d}^{r}(\Delta) t^{d}$; it has the form

$$
H S\left(C^{r}(\Delta), t\right)=\frac{h(t)}{(1-t)^{3}}, \text { where } h(t) \in \mathbb{Z}[t]
$$

Main questions:

- Determine $\operatorname{HS}\left(C^{r}(\Delta), t\right)$. (too hard!)
- What is a formula for $\operatorname{HP}\left(C^{r}(\Delta), d\right)$?
- How large must d be so that $\operatorname{dim} C_{d}^{r}(\Delta)=\operatorname{HP}\left(C^{r}(\Delta), d\right)$?

Low Degree: Morgan-Scot triangulation

$\operatorname{dim} C_{2}^{1}(\mathcal{T})=7$

Low Degree: Morgan-Scot triangulation

$\operatorname{dim} C_{2}^{1}(\mathcal{T})=7$

$\operatorname{dim} C_{2}^{1}\left(\mathcal{T}^{\prime}\right)=6$

Low Degree: Morgan-Scot triangulation

$\operatorname{dim} C_{2}^{1}(\mathcal{T})=7$

$\operatorname{dim} C_{2}^{1}\left(\mathcal{T}^{\prime}\right)=6$

Low Degree: Morgan-Scot triangulation

$\operatorname{dim} C_{2}^{1}(\mathcal{T})=7$

$\operatorname{dim} C_{2}^{1}\left(\mathcal{T}^{\prime}\right)=6$

Low Degree: Morgan-Scot triangulation

$\operatorname{dim} C_{2}^{1}(\mathcal{T})=7$

$\operatorname{dim} C_{2}^{1}\left(\mathcal{T}^{\prime}\right)=6$
$\operatorname{dim} C_{d}^{1}(\mathcal{T})=\operatorname{dim} C_{d}^{1}\left(\mathcal{T}^{\prime}\right)$ if $d \neq 2!$

Low Degree: Morgan-Scot triangulation

$\operatorname{dim} C_{2}^{1}(\mathcal{T})=7$

$\operatorname{dim} C_{2}^{1}\left(\mathcal{T}^{\prime}\right)=6$
$\operatorname{dim} C_{d}^{1}(\mathcal{T})=\operatorname{dim} C_{d}^{1}\left(\mathcal{T}^{\prime}\right)$ if $d \neq 2!$
Conjecture (at least 30 years old) $\operatorname{dim} C_{d}^{1}(\Delta)=H P\left(C^{1}(\Delta), d\right)$ for $d \geq 3$.

Low Degree: Morgan-Scot triangulation

$\operatorname{dim} C_{2}^{1}(\mathcal{T})=7$

$\operatorname{dim} C_{2}^{1}\left(\mathcal{T}^{\prime}\right)=6$
$\operatorname{dim} C_{d}^{1}(\mathcal{T})=\operatorname{dim} C_{d}^{1}\left(\mathcal{T}^{\prime}\right)$ if $d \neq 2!$

Conjecture (at least 30 years old)

$\operatorname{dim} C_{d}^{1}(\Delta)=H P\left(C^{1}(\Delta), d\right)$ for $d \geq 3$.
Only $\operatorname{dim} C_{2}^{1}(\Delta)$ can differ from expected dimension formula

Piecewise linear functions

If $\Delta \subset \mathbb{R}^{2}$ is a triangulation with v vertices, then $\operatorname{dim} C_{1}^{0}(\Delta)=v$.

Piecewise linear functions

If $\Delta \subset \mathbb{R}^{2}$ is a triangulation with v vertices, then $\operatorname{dim} C_{1}^{0}(\Delta)=v$.
Proof by picture: PL function on Δ uniquely determined by value at vertices.

Piecewise linear functions

If $\Delta \subset \mathbb{R}^{2}$ is a triangulation with v vertices, then $\operatorname{dim} C_{1}^{0}(\Delta)=v$.
Proof by picture: PL function on Δ uniquely determined by value at vertices.

Piecewise linear functions

If $\Delta \subset \mathbb{R}^{2}$ is a triangulation with v vertices, then $\operatorname{dim} C_{1}^{0}(\Delta)=v$.
Proof by picture: PL function on Δ uniquely determined by value at vertices.

Piecewise linear functions

If $\Delta \subset \mathbb{R}^{2}$ is a triangulation with v vertices, then $\operatorname{dim} C_{1}^{0}(\Delta)=v$.
Proof by picture: PL function on Δ uniquely determined by value at vertices.

Tent functions

A basis for $C_{1}^{0}(\Delta)$ is given by Courant functions, which take a value of 1 at a chosen vertex and 0 at all other vertices.

Tent functions

A basis for $C_{1}^{0}(\Delta)$ is given by Courant functions, which take a value of 1 at a chosen vertex and 0 at all other vertices.

Tent functions

A basis for $C_{1}^{0}(\Delta)$ is given by Courant functions, which take a value of 1 at a chosen vertex and 0 at all other vertices.

Tent functions

A basis for $C_{1}^{0}(\Delta)$ is given by Courant functions, which take a value of 1 at a chosen vertex and 0 at all other vertices.

Tent functions

A basis for $C_{1}^{0}(\Delta)$ is given by Courant functions, which take a value of 1 at a chosen vertex and 0 at all other vertices.

Tent functions

A basis for $C_{1}^{0}(\Delta)$ is given by Courant functions, which take a value of 1 at a chosen vertex and 0 at all other vertices.

Tent functions

A basis for $C_{1}^{0}(\Delta)$ is given by Courant functions, which take a value of 1 at a chosen vertex and 0 at all other vertices.

Tent functions

A basis for $C_{1}^{0}(\Delta)$ is given by Courant functions, which take a value of 1 at a chosen vertex and 0 at all other vertices.

Tent functions

A basis for $C_{1}^{0}(\Delta)$ is given by Courant functions, which take a value of 1 at a chosen vertex and 0 at all other vertices.

Tent functions

A basis for $C_{1}^{0}(\Delta)$ is given by Courant functions, which take a value of 1 at a chosen vertex and 0 at all other vertices.

- No dependence on geometry!

Tent functions

A basis for $C_{1}^{0}(\Delta)$ is given by Courant functions, which take a value of 1 at a chosen vertex and 0 at all other vertices.

- No dependence on geometry!
- [Billera '89]: If $\Delta \subset \mathbb{R}^{2}$ is a triangulation of a domain Ω without holes then
- $C^{0}(\Delta)$ is a free module over $\mathbb{R}[x, y]$
- $\operatorname{dim} C_{d}^{0}(\Delta)$ is completely combinatorial

Tent functions

A basis for $C_{1}^{0}(\Delta)$ is given by Courant functions, which take a value of 1 at a chosen vertex and 0 at all other vertices.

- No dependence on geometry!
- [Billera '89]: If $\Delta \subset \mathbb{R}^{2}$ is a triangulation of a domain Ω without holes then
- $C^{0}(\Delta)$ is a free module over $\mathbb{R}[x, y]$
- $\operatorname{dim} C_{d}^{0}(\Delta)$ is completely combinatorial

Generalizes to arbitrary dimensions.

PL functions depend on geometry

If $\Delta \subset \mathbb{R}^{2}$ is a polytopal complex, $\operatorname{dim} C_{1}^{0}(\Delta)$ depends on geometry of Δ.

PL functions depend on geometry

If $\Delta \subset \mathbb{R}^{2}$ is a polytopal complex, $\operatorname{dim} C_{1}^{0}(\Delta)$ depends on geometry of Δ.

\mathcal{Q}_{1}
$\operatorname{dim} C_{1}^{0}\left(\mathcal{Q}_{1}\right)=4$

\mathcal{Q}_{2}
$\operatorname{dim} C_{1}^{0}\left(\mathcal{Q}_{2}\right)=3$

Trivial PL Functions

- A trivial PL function on $\Delta \subset \mathbb{R}^{2}$ has the same linear function on each face.
- dim(trivial splines on $\Delta)=3$ always, with basis $1, x, y$.

1

x

y

NonTrivial PL Functions

- Nontrivial PL function on has at least two different linear functions on different faces.

NonTrivial PL Functions

- Nontrivial PL function on has at least two different linear functions on different faces.
- One nontrivial PL function on \mathcal{Q}_{1}, whose graph is below:

When you move to \mathcal{Q}_{2} you lose this function!

NonTrivial PL Functions

- Nontrivial PL function on has at least two different linear functions on different faces.
- One nontrivial PL function on \mathcal{Q}_{1}, whose graph is below:

When you move to \mathcal{Q}_{2} you lose this function!

- In general, computing $C_{1}^{0}(\Delta)$ entails determining when edges of Δ come from projecting a polyhedral surface

NonTrivial PL Functions

- Nontrivial PL function on has at least two different linear functions on different faces.
- One nontrivial PL function on \mathcal{Q}_{1}, whose graph is below:

When you move to \mathcal{Q}_{2} you lose this function!

- In general, computing $C_{1}^{0}(\Delta)$ entails determining when edges of Δ come from projecting a polyhedral surface
- Relates to rigidity theory, dates back to Maxwell in 1860s

Impact of PL functions on freeness

Nonfreeness for Polytopal Complexes [D. '12]

If Δ is a polytopal subdivision of a planar domain Ω without holes, $C^{0}(\Delta)$ need not be free [D. '12].

Impact of PL functions on freeness

Nonfreeness for Polytopal Complexes [D. '12]

If Δ is a polytopal subdivision of a planar domain Ω without holes, $C^{0}(\Delta)$ need not be free [D. '12].

Impact of PL functions on freeness

Nonfreeness for Polytopal Complexes [D. '12]

If Δ is a polytopal subdivision of a planar domain Ω without holes, $C^{0}(\Delta)$ need not be free [D. '12].

Impact of PL functions on freeness

Nonfreeness for Polytopal Complexes [D. '12]

If Δ is a polytopal subdivision of a planar domain Ω without holes, $C^{0}(\Delta)$ need not be free [D. '12].

Impact of PL functions on freeness

Nonfreeness for Polytopal Complexes [D. '12]

If Δ is a polytopal subdivision of a planar domain Ω without holes, $C^{0}(\Delta)$ need not be free [D. '12].

Persistence of 'extra' PL function determines freeness.

Planar simplicial splines of large degree

Planar simplicial dimension [Alfeld-Schumaker '90]

If $\Delta \subset \mathbb{R}^{2}$ is a simply connected triangulation and $d \geq 3 r+1$,

$$
\operatorname{dim} C_{d}^{r}(\Delta)=f_{2}\binom{d+2}{2}-f_{1}^{0}\left(\binom{d+2}{2}-\binom{d-r+1}{2}\right)+\sigma
$$

- $f_{i}\left(f_{i}^{0}\right)$ is the number of i-faces (interior i-faces).
- $\sigma=$ constant obtained as a sum of contributions from each interior vertex.

Planar non-simplicial splines of large degree

Planar non-simplicial dimension [McDonald-Schenck '09]

If $\Delta \subset \mathbb{R}^{2}$ is a simply connected polytopal complex and $d \gg 0$,

$$
\begin{aligned}
\operatorname{dim} C_{d}^{r}(\Delta)= & f_{2}\binom{d+2}{2}-f_{1}^{0}\left(\binom{d+2}{2}-\binom{d-r+1}{2}\right) \\
& +\sigma+\sigma^{\prime}
\end{aligned}
$$

- $f_{i}\left(f_{i}^{0}\right)$ is the number of i-faces (interior i-faces).
- $\sigma=$ sum of constant contributions from interior vertices
- $\sigma^{\prime}=$ sum of constant contributions from 'missing' vertices

Agreement for non-simplicial splines

How large must d be in order for $\operatorname{HP}\left(C^{r}(\Delta), d\right)=\operatorname{dim} C_{d}^{r}(\Delta)$?

Agreement for non-simplicial splines

How large must d be in order for $\operatorname{HP}\left(C^{r}(\Delta), d\right)=\operatorname{dim} C_{d}^{r}(\Delta)$?
Theorem: Using McDonald-Schenck Formula [D. '18]
$\Delta \subset \mathbb{R}^{2}$ a planar polytopal complex. Let $F=$ maximum number of edges appearing in a polytope of Δ. Then $\operatorname{dim} C_{d}^{r}(\Delta)=H P\left(C^{r}(\Delta), d\right)$ for $d \geq(2 F-1)(r+1)-1$.

Agreement for non-simplicial splines

How large must d be in order for $\operatorname{HP}\left(C^{r}(\Delta), d\right)=\operatorname{dim} C_{d}^{r}(\Delta)$?
Theorem: Using McDonald-Schenck Formula [D. '18]
$\Delta \subset \mathbb{R}^{2}$ a planar polytopal complex. Let $F=$ maximum number of edges appearing in a polytope of Δ. Then $\operatorname{dim} C_{d}^{r}(\Delta)=H P\left(C^{r}(\Delta), d\right)$ for $d \geq(2 F-1)(r+1)-1$.

- Worst case examples indicate bound in theorem is off by a factor of about two (F is necessary!)

Agreement for non-simplicial splines

How large must d be in order for $\operatorname{HP}\left(C^{r}(\Delta), d\right)=\operatorname{dim} C_{d}^{r}(\Delta)$?
Theorem: Using McDonald-Schenck Formula [D. '18]
$\Delta \subset \mathbb{R}^{2}$ a planar polytopal complex. Let $F=$ maximum number of edges appearing in a polytope of Δ. Then $\operatorname{dim} C_{d}^{r}(\Delta)=H P\left(C^{r}(\Delta), d\right)$ for $d \geq(2 F-1)(r+1)-1$.

- Worst case examples indicate bound in theorem is off by a factor of about two (F is necessary!)
- Best known bounds in simplicial case are also off by a factor of 1.5

Agreement for non-simplicial splines

How large must d be in order for $\operatorname{HP}\left(C^{r}(\Delta), d\right)=\operatorname{dim} C_{d}^{r}(\Delta)$?

Theorem: Using McDonald-Schenck Formula [D. '18]

$\Delta \subset \mathbb{R}^{2}$ a planar polytopal complex. Let $F=$ maximum number of edges appearing in a polytope of Δ. Then $\operatorname{dim} C_{d}^{r}(\Delta)=H P\left(C^{r}(\Delta), d\right)$ for $d \geq(2 F-1)(r+1)-1$.

- Worst case examples indicate bound in theorem is off by a factor of about two (F is necessary!)
- Best known bounds in simplicial case are also off by a factor of 1.5
- Proof of theorem uses notion of regularity from algebraic geometry

Curved Partitions

More general problem: Compute $\operatorname{dim} C_{d}^{r}(\Delta)$ where Δ is a planar partition whose arcs consist of irreducible algebraic curves.

Curved Partitions

More general problem: Compute $\operatorname{dim} C_{d}^{r}(\Delta)$ where Δ is a planar partition whose arcs consist of irreducible algebraic curves.

$$
x^{2}+(y-1)^{2}=1
$$

Curved Partitions

More general problem: Compute $\operatorname{dim} C_{d}^{r}(\Delta)$ where Δ is a planar partition whose arcs consist of irreducible algebraic curves.

Call functions in $C^{r}(\Delta)$ semi-algebraic splines since they are defined over regions given by polynomial inequalities, or semi-algebraic sets.

Graphs of some semi-algebraic splines

Graph of a spline in $C_{3}^{0}(\Delta)$

Graphs of some semi-algebraic splines

Graph of a spline in $C_{6}^{1}(\Delta)$

Graphs of some semi-algebraic splines

Graph of a spline in $C_{6}^{1}(\Delta)$

- First definitions in this context made in [Wang '75] - algebraic criterion for splines carries over verbatim

Graphs of some semi-algebraic splines

Graph of a spline in $C_{6}^{1}(\Delta)$

- First definitions in this context made in [Wang '75] - algebraic criterion for splines carries over verbatim
- Recent work suggests semi-algebraic splines may be increasingly useful in finite element method [Davydov-Kostin-Saeed '16]

Linearizing

- Focus on $\Delta \subset \mathbb{R}^{2}$ with single interior vertex at $(0,0)$.
- Let Δ_{L} be the subdivision formed by replacing curves by tangent rays at origin

Linearizing

- Focus on $\Delta \subset \mathbb{R}^{2}$ with single interior vertex at $(0,0)$.
- Let Δ_{L} be the subdivision formed by replacing curves by tangent rays at origin

Δ

Linearizing

- Focus on $\Delta \subset \mathbb{R}^{2}$ with single interior vertex at $(0,0)$.
- Let Δ_{L} be the subdivision formed by replacing curves by tangent rays at origin

Tangent rays

Linearizing

- Focus on $\Delta \subset \mathbb{R}^{2}$ with single interior vertex at $(0,0)$.
- Let Δ_{L} be the subdivision formed by replacing curves by tangent rays at origin

Δ_{L}

Linearizing the local case

Theorem: Linearizing $\operatorname{dim} C_{d}^{r}(\Delta)$ [D.-Sottile-Sun '17]

Let Δ consist of n irreducible curves of degree d_{1}, \ldots, d_{n} meeting at $(0,0)$ with distinct tangents and no common zero in $\mathbb{P}^{2}(\mathbb{C})$ other than $(0,0)$. Then, for $d \gg 0$,

$$
\begin{aligned}
& \operatorname{dim} C_{d}^{r}(\Delta)=\operatorname{dim} C_{d}^{r}\left(\Delta_{L}\right) \\
& \quad+\sum_{i=1}^{n}\left(\binom{d+2-d_{i}(r+1)}{2}-\binom{d-r-1}{2}\right)
\end{aligned}
$$

Linearizing the local case

Theorem: Linearizing $\operatorname{dim} C_{d}^{r}(\Delta)$ [D.-Sottile-Sun '17]

Let Δ consist of n irreducible curves of degree d_{1}, \ldots, d_{n} meeting at $(0,0)$ with distinct tangents and no common zero in $\mathbb{P}^{2}(\mathbb{C})$ other than $(0,0)$. Then, for $d \gg 0$,

$$
\begin{aligned}
& \operatorname{dim} C_{d}^{r}(\Delta)=\operatorname{dim} C_{d}^{r}\left(\Delta_{L}\right) \\
& \quad+\sum_{i=1}^{n}\left(\binom{d+2-d_{i}(r+1)}{2}-\binom{d-r-1}{2}\right)
\end{aligned}
$$

- Not true if tangents are not distinct!

Linearizing the local case

Theorem: Linearizing $\operatorname{dim} C_{d}^{r}(\Delta)$ [D.-Sottile-Sun '17]

Let Δ consist of n irreducible curves of degree d_{1}, \ldots, d_{n} meeting at $(0,0)$ with distinct tangents and no common zero in $\mathbb{P}^{2}(\mathbb{C})$ other than $(0,0)$. Then, for $d \gg 0$,

$$
\begin{aligned}
\operatorname{dim} C_{d}^{r}(\Delta)= & \operatorname{dim} C_{d}^{r}\left(\Delta_{L}\right) \\
& +\sum_{i=1}^{n}\left(\binom{d+2-d_{i}(r+1)}{2}-\binom{d-r-1}{2}\right)
\end{aligned}
$$

- Not true if tangents are not distinct!
- Proof uses saturation and toric degenerations (from commutative algebra)

Linearizing the local case

Theorem: Linearizing $\operatorname{dim} C_{d}^{r}(\Delta)$ [D.-Sottile-Sun '17]

Let Δ consist of n irreducible curves of degree d_{1}, \ldots, d_{n} meeting at $(0,0)$ with distinct tangents and no common zero in $\mathbb{P}^{2}(\mathbb{C})$ other than $(0,0)$. Then, for $d \gg 0$,

$$
\begin{aligned}
& \operatorname{dim} C_{d}^{r}(\Delta)=\operatorname{dim} C_{d}^{r}\left(\Delta_{L}\right) \\
& \quad+\sum_{i=1}^{n}\left(\binom{d+2-d_{i}(r+1)}{2}-\binom{d-r-1}{2}\right)
\end{aligned}
$$

- Not true if tangents are not distinct!
- Proof uses saturation and toric degenerations (from commutative algebra)
- Bounds on d for when equality holds are also considered, using regularity

THANK YOU!

References I

B
Peter Alfeld and Larry L. Schumaker.
On the dimension of bivariate spline spaces of smoothness r and degree
$d=3 r+1$.
Numer. Math., 57(6-7):651-661, 1990.

Louis J. Billera.
The algebra of continuous piecewise polynomials.
Adv. Math., 76(2):170-183, 1989.

Oleg Davydov, Georgy Kostin, and Abid Saeed.
Polynomial finite element method for domains enclosed by piecewise conics.
Comput. Aided Geom. Design, 45:48-72, 2016.
围
Michael DiPasquale.
Shellability and freeness of continuous splines.
J. Pure Appl. Algebra, 216(11):2519-2523, 2012.

Michael DiPasquale, Frank Sottile, and Lanyin Sun.
Semialgebraic splines.
Comput. Aided Geom. Design, 55:29-47, 2017.
T
Michael DiPasquale.
Dimension of mixed splines on polytopal cells.
Math. Comp., 87(310):905-939, 2018.

References II

B
Daniel R. Grayson and Michael E. Stillman.
Macaulay2, a software system for research in algebraic geometry
Available at http://www.math.uiuc.edu/Macaulay2/.

Terry McDonald and Hal Schenck.
Piecewise polynomials on polyhedral complexes.
Adv. in Appl. Math., 42(1):82-93, 2009.

Gilbert Strang.
Piecewise polynomials and the finite element method.
Bull. Amer. Math. Soc. 79:1128-1137, 1973.Ren Hong Wang.
Structure of multivariate splines, and interpolation.
Acta Math. Sinica 18(2): 91-106, 1975.

Open Questions

- Long standing open question (planar triangulations): Compute $\operatorname{dim} C_{3}^{1}(\Delta)$

Open Questions

- Long standing open question (planar triangulations): Compute $\operatorname{dim} C_{3}^{1}(\Delta)$
- More generally (planar triangulations): Compute $\operatorname{dim} C_{d}^{r}(\Delta)$ for $r+1 \leq d \leq 3 r+1$

Open Questions

- Long standing open question (planar triangulations): Compute $\operatorname{dim} C_{3}^{1}(\Delta)$
- More generally (planar triangulations): Compute $\operatorname{dim} C_{d}^{r}(\Delta)$ for $r+1 \leq d \leq 3 r+1$
- More generally (planar polytopal complexes): Compute $\operatorname{dim} C_{d}^{r}(\Delta)$ for $r+1 \leq d \leq(2 F-1)(r+1)$ (F maximum number of edges in a two-cell)

Open Questions

- Long standing open question (planar triangulations): Compute $\operatorname{dim} C_{3}^{1}(\Delta)$
- More generally (planar triangulations): Compute $\operatorname{dim} C_{d}^{r}(\Delta)$ for $r+1 \leq d \leq 3 r+1$
- More generally (planar polytopal complexes): Compute $\operatorname{dim} C_{d}^{r}(\Delta)$ for $r+1 \leq d \leq(2 F-1)(r+1)$ (F maximum number of edges in a two-cell)
- If $\Delta \subset \mathbb{R}^{3}, \operatorname{dim} C_{d}^{r}(\Delta)$ is not known for $d \gg 0$ except for $r=1, d \geq 8$ on generic triangulations
[Alfeld-Schumaker-Whitely '93]. (connects to unsolved problems in algebraic geometry)

Open Questions

- Bounds on $\operatorname{dim} C_{d}^{r}(\Delta)$ for $\Delta \subset \mathbb{R}^{3}$ [Mourrain-Villamizar '15] (most recent). Improve these!

Open Questions

- Bounds on $\operatorname{dim} C_{d}^{r}(\Delta)$ for $\Delta \subset \mathbb{R}^{3}$ [Mourrain-Villamizar '15] (most recent). Improve these!
- Characterize freeness $C^{r}(\Delta)$.

Open Questions

- Bounds on $\operatorname{dim} C_{d}^{r}(\Delta)$ for $\Delta \subset \mathbb{R}^{3}$ [Mourrain-Villamizar '15] (most recent). Improve these!
- Characterize freeness $C^{r}(\Delta)$.
- Compute $\operatorname{dim} C_{d}^{r}(\Delta)$ for semi-algebraic splines on more general planar partitions for $d \gg 0$

Cross-Cut Partitions

A partition of a domain D is called a cross-cut partition if the union of its two-cells are the complement of a line arrangement.

Cross-Cut Partitions

A partition of a domain D is called a cross-cut partition if the union of its two-cells are the complement of a line arrangement.

Cross-Cut Partitions

A partition of a domain D is called a cross-cut partition if the union of its two-cells are the complement of a line arrangement.

- Basis for $C_{d}^{r}(\Delta)$ and $\operatorname{dim} C_{d}^{r}(\Delta)$ [Chui-Wang '83]
- $C^{r}(\Delta)$ is free for any r [Schenck '97]

Ziegler's Pair

$\mathcal{A}_{t}=$ union of planes defined by vanishing of the nine linear forms:

$$
\begin{array}{lllll}
x & y & x+y+z & 2 x+y+z & (1+t) x+(3+t) z \\
& z & 2 x+3 y+z & 2 x+3 y+4 z & (1+t) x+(2+t) y+(3+t) z
\end{array}
$$

Ziegler's Pair

$\mathcal{A}_{t}=$ union of planes defined by vanishing of the nine linear forms:

$$
\begin{array}{lllll}
x & y & x+y+z & 2 x+y+z & (1+t) x+(3+t) z \\
& z & 2 x+3 y+z & 2 x+3 y+4 z & (1+t) x+(2+t) y+(3+t) z
\end{array}
$$

\mathcal{A}_{t} has six triple lines

Ziegler's Pair

$\mathcal{A}_{t}=$ union of planes defined by vanishing of the nine linear forms:

$$
\begin{array}{lllll}
x & y & x+y+z & 2 x+y+z & (1+t) x+(3+t) z \\
& z & 2 x+3 y+z & 2 x+3 y+4 z & (1+t) x+(2+t) y+(3+t) z
\end{array}
$$

\mathcal{A}_{t} has six triple lines

which lie on a cone only if $t=0$

Ziegler's Pair

$\mathcal{A}_{t}=$ union of planes defined by vanishing of the nine linear forms:

$$
\begin{array}{lllll}
x & y & x+y+z & 2 x+y+z & (1+t) x+(3+t) z \\
& z & 2 x+3 y+z & 2 x+3 y+4 z & (1+t) x+(2+t) y+(3+t) z
\end{array}
$$

\mathcal{A}_{t} has six triple lines which lie on a cone only if $t=0$

- Let Δ_{t} be the polytopal complex formed by dividing $[-1,1] \times[-1,1] \times[-1,1]$ by \mathcal{A}_{t} (there are 62 polytopes)

Ziegler's Pair

$\mathcal{A}_{t}=$ union of planes defined by vanishing of the nine linear forms:

$$
\begin{array}{lllll}
x & y & x+y+z & 2 x+y+z & (1+t) x+(3+t) z \\
& z & 2 x+3 y+z & 2 x+3 y+4 z & (1+t) x+(2+t) y+(3+t) z
\end{array}
$$

\mathcal{A}_{t} has six triple lines which lie on a cone only if $t=0$

- Let Δ_{t} be the polytopal complex formed by dividing $[-1,1] \times[-1,1] \times[-1,1]$ by \mathcal{A}_{t} (there are 62 polytopes)
- $C^{0}\left(\Delta_{t}\right)$ is free if and only if $t \neq 0$!

