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Piecewise Polynomials

A piecewise polynomial function, continuously differentiable to
some order.
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Low degree splines are used in Calc 1 to approximate integrals.
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Some Context: Splines in Calculus 1

Low degree splines are used in Calc 1 to approximate integrals.

f(x)

Simpson’s Rule



Origin

Term spline originated in shipbuilding - referred to flexible wooden
strips anchored at several points.

Source: http://technologycultureboats.blogspot.com/2014/12/gustave-caillebotte-and-curves. html



Current applications

» Computer-Aided Geometric Design (CAGD): splines used to
create models by interpolating datapoints.

Source: http://www.tsplines.com/products/what-are-t-splines.html



Current applications

» Computer-Aided Geometric Design (CAGD): splines used to
create models by interpolating datapoints.

Source: http://www.tsplines.com/products/what-are-t-splines.htm/!
» Finite Element Method (FEM): best approximation to a
solution of a partial differential equation (PDE) is obtained in
a spline space
» FEM especially useful for PDEs in engineering and
mathematical physics



Univariate splines

Most widely studied case: approximation of a function f(x) over
an interval A = [a, b] C R by C" piecewise polynomials.



Univariate splines

Most widely studied case: approximation of a function f(x) over
an interval A = [a, b] C R by C" piecewise polynomials.
» Subdivide A = [a, b] into subintervals:
A = [ag,a1] U [a1, @) U---Ulap—1, an|
» Find a basis for the vector space Cj(A) of C" piecewise

polynomial functions on A with degree at most d (e.g.
B-splines)

» Find best approximation to f(x) in C}(A)



Example: two subintervals
A = [ag, a1] U [a1, a2] (assume WLOG a; = 0)
(,f) € Cy(A) — £(0)=£)0) foro<i<r
= x"(h - 1)

= (h—f)e ™)



Example: two subintervals
A = [ag, a1] U [a1, a2] (assume WLOG a; = 0)
(h.6) e C(A) = FI0)=£20)foro<i<r
= x"(h - 1)
= (h-hf)e ()

Even more explicitly:
> f1(x) = by + byx + - + bgx?
> fo(x) =co+ax+ -+ cgx?
» (f,h) € Cj(A) <= by=cp,...,by =c;.



Example: two subintervals
A = [ag, a1] U [a1, a2] (assume WLOG a; = 0)
(,f) € Cy(A) — £(0)=£)0) foro<i<r
= x"(h - 1)

= (h—f)e ™)

Even more explicitly:
> f1(x) = by + byx + - + bgx?
> fo(x) =co+ax+ -+ cgx?
» (f,h) € Cj(A) <= by=cp,...,by =c;.

[ dt ifd<r
dlmcd(A)_{(dJrl)Jr(d—r) ifd>r

Note: dim C}(A) is polynomial in d for d > r.
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together along faces to yield a domain Q with no holes



Dimension two
Subdivision / ¢ R! — polytopal complex A C R?
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(-2,-2) (2,-2)
A polytopal complex Q

» A : full dimensional convex polygons (polytopes) ‘glued’
together along faces to yield a domain Q with no holes

» C'(A) : piecewise polynomial functions on A which are
continuously differentiable of order r (C" splines)

» CJ(A) : C" splines of degree at most d



The dimension question

C/(A) is a finite dimensional real vector space.
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1. Determine dim C}(A)
2. Construct a ‘local" basis of Cj(A), if possible



The dimension question

C/(A) is a finite dimensional real vector space.

Yy X
x| 1 X X X X
A basis for CY(Q) y X
is shown at right.
y 1

dimg CY(Q) = 4

yiy |yl |1 1 |1

y 1
Two central problems in approximation theory:

1. Determine dim C}(A)

2. Construct a ‘local" basis of Cj(A), if possible
Posed in 1973 by Strang for C* splines on triangulations




Translation to algebra
(Algebraic) Spline Criterion:
» If 7 is an edge of A, /. = affine form vanishing on affine span
of 7
» Collection {F,} (one for each 2-dimensional polytope o)
define F € C"(A) <= for every pair of adjacent polytopes
01,00 € Ny with oy Nop =7, I (Fy, — Fyy)



Translation to algebra
(Algebraic) Spline Criterion:
» If 7 is an edge of A, /. = affine form vanishing on affine span
of 7
» Collection {F,} (one for each 2-dimensional polytope o)
define F € C"(A) <= for every pair of adjacent polytopes
01,00 € Ny with oy Nop =7, I (Fy, — Fyy)
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Translation to algebra
(Algebraic) Spline Criterion:
» If 7 is an edge of A, /. = affine form vanishing on affine span
of 7
» Collection {F,} (one for each 2-dimensional polytope o)
define F € C"(A) <= for every pair of adjacent polytopes
01,00 € Ny with oy Nop =7, I (Fy, — Fyy)

y

F e CY(Q)
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Algebraic Structure of C"(A)

C"(A) has structure as a module over R[x, y]:
Given F,G € C"(A) and f € R[x, y]:

> F+Ge C'(A)

> f-FeCr(A)
y X

x| 1 X X X X
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Algebraic Structure of C"(A)

C"(A) has structure as a module over R[x, y]:
Given F,G € C"(A) and f € R[x, y]:

> F+Ge Cr'(A)

> £ FeCr(h)
y X Xy
x| 1 N -x4 X |X
—y X —Xy
F e C(Q) x € CY(Q) xF € G(Q)
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Example: continuous splines on a simplicial complex

F1
F>
F3

€ C%A) < 3, h
so that
Fl — F2 = f1X

Fo—F= fh(x—y)
F3—F = fy



Example, continued: freeness

/)/‘;X Thr lines in CO(A):
—y/ ee splines (A)

X
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Example, continued: freeness
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Example, continued: freeness
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> In fact, every spline F € C°(A) can be written uniquely as a
polynomial combination of these three splines.



Example, continued: freeness

/ |
7 )/)>y Three splines in CO(A):

Y.y

> In fact, every spline F € C°(A) can be written uniquely as a
polynomial combination of these three splines.

» We say C°(A) is a free R[x, y]-module
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Example, continued: dimension computation

1 0 0
CIA) = R[x,yl<d | 1| ®R[x,y]<d-1 | x | ® R[x, y]<q—2 XE
1 y y

Rlx,yl<k = span{xiyj ci+j <k}

dimR[x,yl<x = (“3?)

smaer= (127)+ (12 +()

= %dz—l—%d—I—lfordZO



Hilbert series and polynomial

A C R?. From commutative algebra
» dim C}(A) is called the Hilbert function of C"(A)
» Hilbert function is eventually a polynomial of degree 2 in d,
called the Hilbert polynomial of C"(A) and denoted

HP(C"(A),d)
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Hilbert series and polynomial

A C R?. From commutative algebra
» dim C}(A) is called the Hilbert function of C"(A)

» Hilbert function is eventually a polynomial of degree 2 in d,
called the Hilbert polynomial of C"(A) and denoted

HP(C"(A), d)
» The Hilbert series is the formal sum
HS(Cr(A), t) = 352 o dim C(A)t9; it has the form

HS(CT(A), £) = (1"9)3 where h(t) € Z[4]

Main questions:
» Determine HS(C"(A), t). (too hard!)
» What is a formula for HP(C'(A),d)?
» How large must d be so that dim C}(A) = HP(C"(A), d)?
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Low Degree: Morgan-Scot triangulation

dim G(T) =7 dim G3(T") =6
dim CY(T) = dim C}(T7) if d # 2!

Conjecture (at least 30 years old)

dim C}(A) = HP(CY(A), d) for d > 3.
Only dim C}(A) can differ from expected dimension formula
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Tent functions

A basis for CI(A) is given by Courant functions, which take a
value of 1 at a chosen vertex and 0 at all other vertices.

» No dependence on geometry!
» [Billera ‘89]: If A C R? is a triangulation of a domain Q
without holes then

» C%(A) is a free module over R[x, y]
» dim CI(A) is completely combinatorial

Generalizes to arbitrary dimensions.
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If A C R? is a polytopal complex, dim C)(A) depends on
geometry of A.



PL functions depend on geometry

If A C R? is a polytopal complex, dim C)(A) depends on
geometry of A.
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dim CY(Q;) = 4 dim C?(Q,) =3



Trivial PL Functions

» A trivial PL function on A C R? has the same linear function
on each face.

» dim(trivial splines on A) = 3 always, with basis 1, x, y.

%
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» Nontrivial PL function on has at least two different linear
functions on different faces.
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of A come from projecting a polyhedral surface



NonTrivial PL Functions

» Nontrivial PL function on has at least two different linear
functions on different faces.

» One nontrivial PL function on Qj, whose graph is below:

-y

When you move to Q5 you lose this function!

» In general, computing CY(A) entails determining when edges
of A come from projecting a polyhedral surface

> Relates to rigidity theory, dates back to Maxwell in 1860s
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If A is a polytopal subdivision of a planar domain 2 without holes,
C%(A) need not be free [D. ‘12].
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C%(A) need not be free [D. ‘12].
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Impact of PL functions on freeness

Nonfreeness for Polytopal Complexes [D. ‘12]

If A is a polytopal subdivision of a planar domain 2 without holes,
C%(A) need not be free [D. ‘12].

(2,3)
(=2,2
1,1) (1,2)
) _1)(1> -
(—2,-2) (2,-2)

Co(A) is free

Persistence of ‘extra’ PL function determines freeness.



Planar simplicial splines of large degree

Planar simplicial dimension [Alfeld-Schumaker ‘90]

If A C R? is a simply connected triangulation and d > 3r + 1,

dimcg(A):5<d;2> —ff’((d;z) — (d_zr“)) + o0,

» £(f0) is the number of i-faces (interior i-faces).

!

» o = constant obtained as a sum of contributions from each
interior vertex.



Planar non-simplicial splines of large degree

Planar non-simplicial dimension [McDonald-Schenck ‘09]

If A C R? is a simply connected polytopal complex and d >> 0,

dim C5() =f2<d;2> —f ((df) - <d2r+1>>

—i—a—i—a/,

» £(£0) is the number of i-faces (interior i-faces).
» o = sum of constant contributions from interior vertices

» o' = sum of constant contributions from ‘missing’ vertices
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Agreement for non-simplicial splines

How large must d be in order for HP(C"(A), d) = dim C}(A)?

Theorem: Using McDonald-Schenck Formula [D. 18]

A C R? a planar polytopal complex. Let F = maximum number of
edges appearing in a polytope of A. Then
dim Cj(A) = HP(C"(A),d) for d > (2F —1)(r +1) — 1.

» Worst case examples indicate bound in theorem is off by a
factor of about two (F is necessary!)

» Best known bounds in simplicial case are also off by a factor
of 1.5

» Proof of theorem uses notion of regularity from algebraic
geometry
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Curved Partitions

More general problem: Compute dim C/(A) where A is a planar
partition whose arcs consist of irreducible algebraic curves.

Call functions in C"(A) semi-algebraic splines since they are
defined over regions given by polynomial inequalities, or
semi-algebraic sets.
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Graphs of some semi-algebraic splines

/
i)

Graph of a spline in C3(A)

» First definitions in this context made in [Wang '75] - algebraic

criterion for splines carries over verbatim

» Recent work suggests semi-algebraic splines may be
increasingly useful in finite element method

[Davydov-Kostin-Saeed ‘16]
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Linearizing the local case

Theorem: Linearizing dim C}(A) [D.-Sottile-Sun ‘17]

Let A consist of n irreducible curves of degree di, ..., d, meeting
at (0,0) with distinct tangents and no common zero in P?(C)
other than (0,0). Then, for d > 0,

dim C5(A) = dim C(AL)

+iz:";<<d+2—2d,-(r—|—1)> 3 (d—;—l))



Linearizing the local case

Theorem: Linearizing dim C}(A) [D.-Sottile-Sun ‘17]

Let A consist of n irreducible curves of degree di, ..., d, meeting
at (0,0) with distinct tangents and no common zero in P?(C)
other than (0,0). Then, for d > 0,

dim C4(A) = dim Cj(AL)
4 d+2—di(r+1 d—r—1
R F)-00)

» Not true if tangents are not distinct!



Linearizing the local case

Theorem: Linearizing dim C}(A) [D.-Sottile-Sun ‘17]

Let A consist of n irreducible curves of degree di, ..., d, meeting
at (0,0) with distinct tangents and no common zero in P?(C)
other than (0,0). Then, for d > 0,

dim C4(A) = dim Cj(AL)
4 d+2—di(r+1 d—r—1
R F)-00)

» Not true if tangents are not distinct!

» Proof uses saturation and toric degenerations (from
commutative algebra)



Linearizing the local case

Theorem: Linearizing dim C}(A) [D.-Sottile-Sun ‘17]

Let A consist of n irreducible curves of degree di, ..., d, meeting
at (0,0) with distinct tangents and no common zero in P?(C)
other than (0,0). Then, for d > 0,

dim C4(A) = dim Cj(AL)
4 d+2—di(r+1 d—r—1
R F)-00)

» Not true if tangents are not distinct!

» Proof uses saturation and toric degenerations (from
commutative algebra)

» Bounds on d for when equality holds are also considered,
using regularity



THANK YOU!




References |

[

T 1 T N 1 R

Peter Alfeld and Larry L. Schumaker.

On the dimension of bivariate spline spaces of smoothness r and degree
d=3r+1.

Numer. Math., 57(6-7):651-661, 1990.

Louis J. Billera.
The algebra of continuous piecewise polynomials.
Adv. Math., 76(2):170-183, 1989.

Oleg Davydov, Georgy Kostin, and Abid Saeed.
Polynomial finite element method for domains enclosed by piecewise conics.
Comput. Aided Geom. Design, 45:48-72, 2016.

Michael DiPasquale.
Shellability and freeness of continuous splines.
J. Pure Appl. Algebra, 216(11):2519-2523, 2012.

Michael DiPasquale, Frank Sottile, and Lanyin Sun.
Semialgebraic splines.
Comput. Aided Geom. Design, 55:29-47, 2017.

Michael DiPasquale.
Dimension of mixed splines on polytopal cells.
Math. Comp., 87(310):905-939, 2018.



References |l

) & & &

Daniel R. Grayson and Michael E. Stillman.
Macaulay2, a software system for research in algebraic geometry
Available at http://www.math.uiuc.edu/Macaulay2/.

Terry McDonald and Hal Schenck.
Piecewise polynomials on polyhedral complexes.
Adv. in Appl. Math., 42(1):82-93, 2009.

Gilbert Strang.
Piecewise polynomials and the finite element method.
Bull. Amer. Math. Soc. 79:1128-1137, 1973.

Ren Hong Wang.
Structure of multivariate splines, and interpolation.
Acta Math. Sinica 18(2): 91-106, 1975.


http://www.math.uiuc.edu/Macaulay2/

Open Questions

» Long standing open question (planar triangulations):
Compute dim C3(A)



Open Questions

» Long standing open question (planar triangulations):
Compute dim C3(A)

» More generally (planar triangulations): Compute dim C}(A)
forr+1<d<3r+1



Open Questions

» Long standing open question (planar triangulations):
Compute dim C3(A)

» More generally (planar triangulations): Compute dim C}(A)
forr+1<d<3r+1

» More generally (planar polytopal complexes): Compute
dim Cj(A) for r+1 < d < (2F —1)(r + 1) (F maximum
number of edges in a two-cell)



Open Questions

» Long standing open question (planar triangulations):
Compute dim C3(A)

» More generally (planar triangulations): Compute dim C}(A)
forr+1<d<3r+1

» More generally (planar polytopal complexes): Compute
dim Cj(A) for r+1 < d < (2F —1)(r + 1) (F maximum
number of edges in a two-cell)

» If A C R3, dim C;(A) is not known for d >> 0 except for
r =1, d > 8 on generic triangulations
[Alfeld-Schumaker-Whitely '93]. (connects to unsolved
problems in algebraic geometry)
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Open Questions

» Bounds on dim C/(A) for A C R3 [Mourrain-Villamizar ‘15]
(most recent). Improve these!

» Characterize freeness C"(A).

» Compute dim C}(A) for semi-algebraic splines on more
general planar partitions for d > 0
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Cross-Cut Partitions

A partition of a domain D is called a cross-cut partition if the
union of its two-cells are the complement of a line arrangement.

» Basis for C/(A) and dim C}(A) [Chui-Wang '83]
» C"(A) is free for any r [Schenck '97]
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A = union of planes defined by vanishing of the nine linear forms:

X Yy xty+tz 2x+y+z (1+t)x+(3+t)z
z 2x+3y+z  2x+3y+4z  (14t)x+(2+t)y+(3+t)z

A has six triple lines  which lie on a cone only if t =0

> Let A; be the polytopal complex formed by dividing
[—1,1] x [-1,1] x [-1,1] by A; (there are 62 polytopes)

» CO(A;) is free if and only if t # 0!
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