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Piecewise Polynomials

Spline
A piecewise polynomial function, continuously differentiable to
some order.



Some Context: Splines in Calculus 1

Low degree splines are used in Calc 1 to approximate integrals.
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Some Context: Splines in Calculus 1

Low degree splines are used in Calc 1 to approximate integrals.

f(x)

Simpson’s Rule



Origin

Term spline originated in shipbuilding - referred to flexible wooden
strips anchored at several points.

Source: http://technologycultureboats.blogspot.com/2014/12/gustave-caillebotte-and-curves.html



Current applications
I Computer-Aided Geometric Design (CAGD): splines used to

create models by interpolating datapoints.

Source: http://www.tsplines.com/products/what-are-t-splines.html

I Finite Element Method (FEM): best approximation to a
solution of a partial differential equation (PDE) is obtained in
a spline space

I FEM especially useful for PDEs in engineering and
mathematical physics
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Univariate splines

Most widely studied case: approximation of a function f (x) over
an interval ∆ = [a, b] ⊂ R by C r piecewise polynomials.

I Subdivide ∆ = [a, b] into subintervals:
∆ = [a0, a1] ∪ [a1, a2] ∪ · · · ∪ [an−1, an]

I Find a basis for the vector space C r
d (∆) of C r piecewise

polynomial functions on ∆ with degree at most d (e.g.
B-splines)

I Find best approximation to f (x) in C r
d (∆)
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Example: two subintervals
∆ = [a0, a1] ∪ [a1, a2] (assume WLOG a1 = 0)

(f1, f2) ∈ C r
d (∆) ⇐⇒ f (i)

1 (0) = f (i)
2 (0) for 0 ≤ i ≤ r

⇐⇒ x r+1|(f2 − f1)

⇐⇒ (f2 − f1) ∈ 〈x r+1〉

Even more explicitly:
I f1(x) = b0 + b1x + · · ·+ bdxd

I f2(x) = c0 + c1x + · · ·+ cdxd

I (f1, f2) ∈ C r
d (∆) ⇐⇒ b0 = c0, . . . , br = cr .

dimC r
d (∆) =

{
d + 1 if d ≤ r
(d + 1) + (d − r) if d > r

Note: dimC r
d (∆) is polynomial in d for d > r .
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Dimension two
Subdivision I ⊂ R1 → polytopal complex ∆ ⊂ R2

H-1,-1L H1,-1L

H1,1LH-1,1L

H-2,-2L H2,-2L

H2,2LH-2,2L

A polytopal complex Q

I ∆ : full dimensional convex polygons (polytopes) ‘glued’
together along faces to yield a domain Ω with no holes

I C r (∆) : piecewise polynomial functions on ∆ which are
continuously differentiable of order r (C r splines)

I C r
d (∆) : C r splines of degree at most d
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The dimension question
C r

d (∆) is a finite dimensional real vector space.

A basis for C0
1 (Q)

is shown at right.

dimRC0
1 (Q) = 4
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Two central problems in approximation theory:
1. Determine dimC r

d (∆)
2. Construct a ‘local’ basis of C r

d (∆), if possible
Posed in 1973 by Strang for C1 splines on triangulations
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Translation to algebra
(Algebraic) Spline Criterion:

I If τ is an edge of ∆, lτ = affine form vanishing on affine span
of τ

I Collection {Fσ} (one for each 2-dimensional polytope σ)
define F ∈ C r (∆) ⇐⇒ for every pair of adjacent polytopes
σ1, σ2 ∈ ∆2 with σ1 ∩ σ2 = τ , l r+1

τ | (Fσ1 − Fσ2)



Translation to algebra
(Algebraic) Spline Criterion:

I If τ is an edge of ∆, lτ = affine form vanishing on affine span
of τ

I Collection {Fσ} (one for each 2-dimensional polytope σ)
define F ∈ C r (∆) ⇐⇒ for every pair of adjacent polytopes
σ1, σ2 ∈ ∆2 with σ1 ∩ σ2 = τ , l r+1

τ | (Fσ1 − Fσ2)

H-1,-1L H1,-1L

H1,1LH-1,1L

H-2,-2L H2,-2L

H2,2LH-2,2L

The polytopal complex Q



Translation to algebra
(Algebraic) Spline Criterion:

I If τ is an edge of ∆, lτ = affine form vanishing on affine span
of τ

I Collection {Fσ} (one for each 2-dimensional polytope σ)
define F ∈ C r (∆) ⇐⇒ for every pair of adjacent polytopes
σ1, σ2 ∈ ∆2 with σ1 ∩ σ2 = τ , l r+1

τ | (Fσ1 − Fσ2)

-x

y

x

-y

1

F ∈ C0
1 (Q)



Algebraic Structure of C r (∆)

C r (∆) has structure as a module over R[x , y ]:

Given F ,G ∈ C r (∆) and f ∈ R[x , y ]:
I F + G ∈ C r (∆)
I f · F ∈ C r (∆)
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F ∈ C0
1 (Q) x ∈ C0

1 (Q) xF ∈ C0
2 (Q)
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Example: continuous splines on a simplicial complex

(2, 0)

(0, 2)

(−2,−2)

(0, 0)

F1
F2
F3

 ∈ C0(∆) ⇐⇒ ∃f1, f2, f3

so that

F1 − F2 = f1x
F2 − F3 = f2(x − y)
F3 − F1 = f3y
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Example, continued: freeness

y
x

x − y
Three splines in C0(∆):

1
1
1

0
x

y
0

x2
y2

I In fact, every spline F ∈ C0(∆) can be written uniquely as a
polynomial combination of these three splines.

I We say C0(∆) is a free R[x , y ]-module
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Example, continued: dimension computation

C0
d (∆) ∼= R[x , y ]≤d

11
1

⊕ R[x , y ]≤d−1

0
x
y

⊕ R[x , y ]≤d−2

 0
x2

y2



R[x , y ]≤k = span{x iy j : i + j ≤ k}

dimR[x , y ]≤k =
(k+2

2
)

dimC0
d (∆) =

(
d + 2
2

)
+
(

d + 1
2

)
+
(

d
2

)

= 3
2d2 + 3

2d + 1 for d ≥ 0
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Hilbert series and polynomial

∆ ⊂ R2. From commutative algebra
I dimC r

d (∆) is called the Hilbert function of C r (∆)
I Hilbert function is eventually a polynomial of degree 2 in d ,

called the Hilbert polynomial of C r (∆) and denoted
HP(C r (∆), d)

I The Hilbert series is the formal sum
HS(C r (∆), t) =

∑∞
d=0 dimC r

d (∆)td ; it has the form

HS(C r (∆), t) = h(t)
(1− t)3 , where h(t) ∈ Z[t].

Main questions:
I Determine HS(C r (∆), t). (too hard!)
I What is a formula for HP(C r (∆), d)?
I How large must d be so that dimC r

d (∆) = HP(C r (∆), d)?
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Low Degree: Morgan-Scot triangulation

dimC1
2 (T ) = 7

dimC1
2 (T ′) = 6

dimC1
d (T ) = dimC1

d (T ′) if d 6= 2!
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Piecewise linear functions

If ∆ ⊂ R2 is a triangulation with v vertices, then dimC0
1 (∆) = v .

Proof by picture: PL function on ∆ uniquely determined by value
at vertices.
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Tent functions

A basis for C0
1 (∆) is given by Courant functions, which take a

value of 1 at a chosen vertex and 0 at all other vertices.

I No dependence on geometry!
I [Billera ‘89]: If ∆ ⊂ R2 is a triangulation of a domain Ω

without holes then
I C0(∆) is a free module over R[x , y ]
I dimC0

d (∆) is completely combinatorial

Generalizes to arbitrary dimensions.
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PL functions depend on geometry

If ∆ ⊂ R2 is a polytopal complex, dimC0
1 (∆) depends on

geometry of ∆.

H-1,-1L H1,-1L

H1,1LH-1,1L
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Q1 Q2

dimC0
1 (Q1) = 4 dimC0

1 (Q2) = 3
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Trivial PL Functions

I A trivial PL function on ∆ ⊂ R2 has the same linear function
on each face.

I dim(trivial splines on ∆) = 3 always, with basis 1, x , y .

1 x y



NonTrivial PL Functions

I Nontrivial PL function on has at least two different linear
functions on different faces.

I One nontrivial PL function on Q1, whose graph is below:

When you move to Q2 you lose this function!
I In general, computing C0

1 (∆) entails determining when edges
of ∆ come from projecting a polyhedral surface

I Relates to rigidity theory, dates back to Maxwell in 1860s



NonTrivial PL Functions

I Nontrivial PL function on has at least two different linear
functions on different faces.

I One nontrivial PL function on Q1, whose graph is below:

When you move to Q2 you lose this function!

I In general, computing C0
1 (∆) entails determining when edges

of ∆ come from projecting a polyhedral surface
I Relates to rigidity theory, dates back to Maxwell in 1860s



NonTrivial PL Functions

I Nontrivial PL function on has at least two different linear
functions on different faces.

I One nontrivial PL function on Q1, whose graph is below:

When you move to Q2 you lose this function!
I In general, computing C0

1 (∆) entails determining when edges
of ∆ come from projecting a polyhedral surface

I Relates to rigidity theory, dates back to Maxwell in 1860s



NonTrivial PL Functions

I Nontrivial PL function on has at least two different linear
functions on different faces.

I One nontrivial PL function on Q1, whose graph is below:

When you move to Q2 you lose this function!
I In general, computing C0

1 (∆) entails determining when edges
of ∆ come from projecting a polyhedral surface

I Relates to rigidity theory, dates back to Maxwell in 1860s



Impact of PL functions on freeness
Nonfreeness for Polytopal Complexes [D. ‘12]
If ∆ is a polytopal subdivision of a planar domain Ω without holes,
C0(∆) need not be free [D. ‘12].

Persistence of ‘extra’ PL function determines freeness.
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Planar simplicial splines of large degree

Planar simplicial dimension [Alfeld-Schumaker ‘90]
If ∆ ⊂ R2 is a simply connected triangulation and d ≥ 3r + 1,

dimC r
d (∆) = f2

(
d + 2
2

)
− f 01

((
d + 2
2

)
−
(

d − r + 1
2

))
+ σ,

I fi (f 0i ) is the number of i-faces (interior i-faces).
I σ = constant obtained as a sum of contributions from each

interior vertex.



Planar non-simplicial splines of large degree

Planar non-simplicial dimension [McDonald-Schenck ‘09]
If ∆ ⊂ R2 is a simply connected polytopal complex and d � 0,

dimC r
d (∆) =f2

(
d + 2
2

)
− f 01

((
d + 2
2

)
−
(

d − r + 1
2

))
+ σ + σ′,

I fi (f 0i ) is the number of i-faces (interior i-faces).
I σ = sum of constant contributions from interior vertices
I σ′ = sum of constant contributions from ‘missing’ vertices



Agreement for non-simplicial splines

How large must d be in order for HP(C r (∆), d) = dimC r
d (∆)?

Theorem: Using McDonald-Schenck Formula [D. ‘18]
∆ ⊂ R2 a planar polytopal complex. Let F = maximum number of
edges appearing in a polytope of ∆. Then
dimC r

d (∆) = HP(C r (∆), d) for d ≥ (2F − 1)(r + 1)− 1.

I Worst case examples indicate bound in theorem is off by a
factor of about two (F is necessary!)

I Best known bounds in simplicial case are also off by a factor
of 1.5

I Proof of theorem uses notion of regularity from algebraic
geometry
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Curved Partitions

More general problem: Compute dimC r
d (∆) where ∆ is a planar

partition whose arcs consist of irreducible algebraic curves.

(x − 1)2 + (y + 1)2 = 2x2 + (y − 1)2 = 1

x = 0

(0, 0)

Call functions in C r (∆) semi-algebraic splines since they are
defined over regions given by polynomial inequalities, or
semi-algebraic sets.
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Graphs of some semi-algebraic splines

Graph of a spline in C0
3 (∆)

I First definitions in this context made in [Wang ’75] - algebraic
criterion for splines carries over verbatim

I Recent work suggests semi-algebraic splines may be
increasingly useful in finite element method
[Davydov-Kostin-Saeed ‘16]
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I Focus on ∆ ⊂ R2 with single interior vertex at (0, 0).
I Let ∆L be the subdivision formed by replacing curves by

tangent rays at origin
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Linearizing
I Focus on ∆ ⊂ R2 with single interior vertex at (0, 0).
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Linearizing the local case
Theorem: Linearizing dim C r

d(∆) [D.-Sottile-Sun ‘17]
Let ∆ consist of n irreducible curves of degree d1, . . . , dn meeting
at (0, 0) with distinct tangents and no common zero in P2(C)
other than (0, 0). Then, for d � 0,

dimC r
d (∆) = dimC r

d (∆L)

+
n∑

i=1

((
d + 2− di (r + 1)

2

)
−
(

d − r − 1
2

))

I Not true if tangents are not distinct!
I Proof uses saturation and toric degenerations (from

commutative algebra)
I Bounds on d for when equality holds are also considered,

using regularity
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Open Questions

I Long standing open question (planar triangulations):
Compute dimC1

3 (∆)

I More generally (planar triangulations): Compute dimC r
d (∆)

for r + 1 ≤ d ≤ 3r + 1
I More generally (planar polytopal complexes): Compute

dimC r
d (∆) for r + 1 ≤ d ≤ (2F − 1)(r + 1) (F maximum

number of edges in a two-cell)
I If ∆ ⊂ R3, dimC r

d (∆) is not known for d � 0 except for
r = 1, d ≥ 8 on generic triangulations
[Alfeld-Schumaker-Whitely ‘93]. (connects to unsolved
problems in algebraic geometry)
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Open Questions

I Bounds on dimC r
d (∆) for ∆ ⊂ R3 [Mourrain-Villamizar ‘15]

(most recent). Improve these!

I Characterize freeness C r (∆).
I Compute dimC r

d (∆) for semi-algebraic splines on more
general planar partitions for d � 0
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Cross-Cut Partitions

A partition of a domain D is called a cross-cut partition if the
union of its two-cells are the complement of a line arrangement.

I Basis for C r
d (∆) and dimC r

d (∆) [Chui-Wang ‘83]
I C r (∆) is free for any r [Schenck ‘97]
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Ziegler’s Pair
At = union of planes defined by vanishing of the nine linear forms:

x y x+y+z 2x+y+z (1+t)x+(3+t)z
z 2x+3y+z 2x+3y+4z (1+t)x+(2+t)y+(3+t)z

At has six triple lines which lie on a cone only if t = 0
I Let ∆t be the polytopal complex formed by dividing

[−1, 1]× [−1, 1]× [−1, 1] by At (there are 62 polytopes)
I C0(∆t) is free if and only if t 6= 0!
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