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Piecewise Linear Functions (PL Functions)

A function which is continuous and piecewise linear over some
subdivision.



PL functions in Calculus

Piecewise linear (PL) functions are used in calculus to approximate
integrals.
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Applications: Computer-Aided Geometric Design

Piecewise linear (PL) functions are used to create models of
complex objects.

Source: http://en.wikipedia.org/wiki/File:Dolphin triangle mesh.png
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Counting PL Functions in one variable

∆ = [−1, 0] ∪ [0, 1]

h(x) =

{
ax + b −1 ≤ x < 0
cx + d 0 ≤ x ≤ 1

Which of the coefficients a, b, c, d can be chosen freely if h(x) is
required to be continuous?

Plugging in x = 0 gives b = d

So free to determine a, b, c

PL functions on ∆ are a three dimensional vector space
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Dimension Question

If ∆ is a union of subintervals,

What is the dimension of the vector space of PL functions on
∆?

In other words, how many free variables are there?

Can we find a basis for this vector space?

This question has its origins in approximation theory.
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The dimension of the space of PL functions on a subdivision is
equal to the number of vertices of the subdivision.

Proof by picture: PL function determined uniquely by value on
vertices



Counting Univariate PL Functions

The dimension of the space of PL functions on a subdivision is
equal to the number of vertices of the subdivision.

Proof by picture: PL function determined uniquely by value on
vertices



Counting Univariate PL Functions

The dimension of the space of PL functions on a subdivision is
equal to the number of vertices of the subdivision.

Proof by picture: PL function determined uniquely by value on
vertices



Counting Univariate PL Functions

The dimension of the space of PL functions on a subdivision is
equal to the number of vertices of the subdivision.

Proof by picture: PL function determined uniquely by value on
vertices



Tent Functions

A basis for PL functions is given by ‘Courant functions’ or ‘tent
functions’ are 1 at a chosen vertex and 0 at all others.
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Counting Bivariate PL Functions

∆ = union of three triangles below

H0, 0L

H-1, -1L

H0, 1L

H1, 0LT1

T2

T3

∆

Continuity =⇒

b = e
c = f = i
d = g

a + b = g + h

a, b, c, d determine
e, f , g , h, i
=⇒ PL functions is
4-dim vector space
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Counting Bivariate PL Functions

If ∆ is a planar triangulation with v vertices, then the space of PL
functions has dimension equal to the number of vertices.

Proof by picture: PL function on ∆ uniquely determined by value
at vertices.
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A basis for PL functions is given by Courant functions, which take
a value of 1 at a chosen vertex and 0 at all other vertices.

Note: dimension only depends on number of vertices.

No dependence on geometry!
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Polygonal Subdivisions

What if we use a polygons instead of triangles?

H-1,-1L H1,-1L

H1,1LH-1,1L

H-2,-2L H2,-2L

H2,2LH-2,2L

A polygonal subdivision

Does the dimension of the space of PL functions depend on
geometry?
YES!
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PL functions depend on geometry

H-1,-1L H1,-1L

H1,1LH-1,1L

H-2,-2L H2,-2L

H2,2LH-2,2L

H-1,-1L H1,-1L
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∆1 ∆2

dim PL functions = 4 dim PL functions = 3



NonTrivial PL Functions

The graph of a PL function on ∆1:

∆2 does not have this function!



NonTrivial PL Functions

The graph of a PL function on ∆1:

∆2 does not have this function!



NonTrivial PL Functions

The graph of a PL function on ∆1:

∆2 does not have this function!



Digression on polytopes
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Get a square by intersecting four half-spaces:
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Edge graphs

Polytopes have:

vertices (0-dimensional),

edges (1-dimensional)

faces (2-dimensional)
...

i-faces (i-dimensional)

Edge graph of a polytope = graph formed by vertices and edges.
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Planar graphs

Edge graphs of 3-polytopes are always planar.

Graphs that can be drawn in the plane without crossing edges are
called planar graphs.

Complete graph on 4 vertices is planar:

Edge graphs of 3-polytopes are planar because of Schlegel
diagrams (edge shadow).
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graph.
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The edge graph of a d-polytope is d-connected.

The edge graph of a cube is 3-connected:
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The edge graph of a 4-dimensional cube is 4-connected:



Steinitz’ Theorem

Steinitz’ Theorem

A graph is the edge graph of a 3-polytope if and only if the graph
is planar and 3-connected.

If a graph is planar and 3-connected,

Is it possible to draw the graph without edges crossing so that
the edges are all straight?

Can you identify polytope for which the graph is the edge
polytope?
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A planar 3-connected graph



Tutte’s embedding

Tutte’s idea (1960) - given a planar 3-connected graph (drawn in
any way):

Fix a cycle C which satisfies that the only edges between
vertices of C are edges of C (no ’chords’)

Edges in C are not movable

Edges not in C=“rubber bands”

Let go! Then...
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Tutte’s embedding, continued

Graph will stabilize at a drawing for which

C is the ’outer cycle’,

no edges cross (Tutte 1960),

all polygonal faces are convex (Tutte 1960),

the drawing is a vertical projection of the graph of a PL
function! (Crapo and Whiteley 1982,1993)

Tutte’s idea inspired many methods which are widely used in
geometric modeling and computer graphics.
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Unpacking Tutte’s embedding

Tutte’s embedding is the minimum of an energy function:

F (V ) =
∑

{i ,j}∈E ,{i ,j}/∈C

ωij ||vi − vj ||2,

vi is the vector of coordinates of vertex vi and

the constants ωij indicate ’strength’ of the rubber bands.

To find local minima, set ∇F = 0.

Yields a force balancing equation at each vertex:∑
vj adjacent to vi

ωij(vj − vi ) = 0.

Forces balance =⇒ vertices don’t move anymore!
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Self-Stress

A collection of constants ωij for each edge {i , j} in a graph with
vertex coordinates vi satisfying the force balancing equations∑

vj adjacent to vi
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Maxwell’s Observation (1860s)

Self-stresses are in 1-1 correspondence (almost) with nontrivial PL
functions!

From self-stress PL function from self-stress
on last slide on Schlegel diagram

of truncated cube

Computing dimension of PL functions
=computing space of self-stresses
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Where to now?

Numerical analysis

Compute dimension formulas for higher degree piecewise
polynomials (splines) over meshes which have higher order
derivatives

Useful for Finite Element Method in partial differential
equations

Connections to algebraic geometry, commutative algebra,
homological algebra

Relates to problem of determining the dimension of the space
of polynomials which vanish to a fixed order on a set of points
(algebraic geometry)

Famous conjecture of Nagata related to Hilbert’s fourteenth
problem
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Where to now?

Rigidity Theory

(Dates back to Cauchy’s rigidity theorem for convex polytopes)

Infinitesimal motions of bar and joint frameworks are dual to
self-stresses

Engineering applications - important to determine stability of
structures

Algebraic combinatorics - the g -theorem (Stanley 1980,
Billera and Lee 1981) for simplicial polytopes relies on ideas
from rigidity

The list goes on...
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THANK YOU!
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