Extending Wilf's Conjecture

Michael DiPasquale
 Colorado State University

University of North Carolina at Charlotte Colloquium

The Frobenius Coin Problem

Suppose I have coins of k different values a_{1}, \ldots, a_{k}, with an infinite supply of coins of each value. Which amounts of money can I make?

The Frobenius Coin Problem

Suppose I have coins of k different values a_{1}, \ldots, a_{k}, with an infinite supply of coins of each value. Which amounts of money can I make?

If $a_{1}=3, a_{2}=5$, can make the amounts $\{0,3,5,6,8,9,10, \cdots\}$.

The Frobenius Coin Problem

Suppose I have coins of k different values a_{1}, \ldots, a_{k}, with an infinite supply of coins of each value. Which amounts of money can I make?

If $a_{1}=3, a_{2}=5$, can make the amounts $\{0,3,5,6,8,9,10, \cdots\}$.

| \bullet |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |

The Frobenius Coin Problem

Suppose I have coins of k different values a_{1}, \ldots, a_{k}, with an infinite supply of coins of each value. Which amounts of money can I make?

If $a_{1}=3, a_{2}=5$, can make the amounts $\{0,3,5,6,8,9,10, \cdots\}$.

| \bullet |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |

If $a_{1}=5, a_{2}=11, a_{3}=17$, can make all amounts >29, and 14 values <29

The Frobenius Coin Problem

Suppose I have coins of k different values a_{1}, \ldots, a_{k}, with an infinite supply of coins of each value. Which amounts of money can I make?

If $a_{1}=3, a_{2}=5$, can make the amounts $\{0,3,5,6,8,9,10, \cdots\}$.

| \bullet |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |

If $a_{1}=5, a_{2}=11, a_{3}=17$, can make all amounts >29, and 14 values <29
$\begin{array}{lllllll}0 & 6 & 12 & 18 & 24 & 30 & 36\end{array}$

The Frobenius Coin Problem

Suppose I have coins of k different values a_{1}, \ldots, a_{k}, with an infinite supply of coins of each value. Which amounts of money can I make?

If $a_{1}=3, a_{2}=5$, can make the amounts $\{0,3,5,6,8,9,10, \cdots\}$.

| \bullet |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |

If $a_{1}=5, a_{2}=11, a_{3}=17$, can make all amounts >29, and 14 values <29

To eventually make all amounts, need $\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)=1$.

Numerical Semigroups

Convention: $\mathbb{N}=\{0,1,2,3, \cdots\}$.
A numerical semigroup is a subset $S \subset \mathbb{N}$ closed under addition so that $|\mathbb{N} \backslash S|<\infty$.

Numerical Semigroups

Convention: $\mathbb{N}=\{0,1,2,3, \cdots\}$.
A numerical semigroup is a subset $S \subset \mathbb{N}$ closed under addition so that $|\mathbb{N} \backslash S|<\infty$.

Given $a_{1}, \ldots, a_{k} \in \mathbb{N},\left\langle a_{1}, \ldots, a_{k}\right\rangle=\left\{\sum \lambda_{i} a_{i}: \lambda_{i} \in \mathbb{N}\right\}$

Numerical Semigroups

Convention: $\mathbb{N}=\{0,1,2,3, \cdots\}$.
A numerical semigroup is a subset $S \subset \mathbb{N}$ closed under addition so that $|\mathbb{N} \backslash S|<\infty$.

Given $a_{1}, \ldots, a_{k} \in \mathbb{N},\left\langle a_{1}, \ldots, a_{k}\right\rangle=\left\{\sum \lambda_{i} a_{i}: \lambda_{i} \in \mathbb{N}\right\}$

- $\operatorname{gcd}\left(a_{1}, \ldots, a_{k}\right)=1 \rightarrow\left\langle a_{1}, \ldots, a_{k}\right\rangle$ a numerical semigroup

Numerical Semigroups

Convention: $\mathbb{N}=\{0,1,2,3, \cdots\}$.
A numerical semigroup is a subset $S \subset \mathbb{N}$ closed under addition so that $|\mathbb{N} \backslash S|<\infty$.

Given $a_{1}, \ldots, a_{k} \in \mathbb{N},\left\langle a_{1}, \ldots, a_{k}\right\rangle=\left\{\sum \lambda_{i} a_{i}: \lambda_{i} \in \mathbb{N}\right\}$

- $\operatorname{gcd}\left(a_{1}, \ldots, a_{k}\right)=1 \rightarrow\left\langle a_{1}, \ldots, a_{k}\right\rangle$ a numerical semigroup
- S a numerical semigroup $\rightarrow S=\left\langle a_{1}, \ldots, a_{k}\right\rangle$ for some a_{1}, \ldots, a_{k}.

Numerical Semigroups

Convention: $\mathbb{N}=\{0,1,2,3, \cdots\}$.
A numerical semigroup is a subset $S \subset \mathbb{N}$ closed under addition so that $|\mathbb{N} \backslash S|<\infty$.

Given $a_{1}, \ldots, a_{k} \in \mathbb{N},\left\langle a_{1}, \ldots, a_{k}\right\rangle=\left\{\sum \lambda_{i} a_{i}: \lambda_{i} \in \mathbb{N}\right\}$

- $\operatorname{gcd}\left(a_{1}, \ldots, a_{k}\right)=1 \rightarrow\left\langle a_{1}, \ldots, a_{k}\right\rangle$ a numerical semigroup
- S a numerical semigroup $\rightarrow S=\left\langle a_{1}, \ldots, a_{k}\right\rangle$ for some a_{1}, \ldots, a_{k}.
- genus is $g(S)=\#(\mathbb{N} \backslash S)$
- Frobenius number is $F(S)=\max (\mathbb{N} \backslash S)$
- embedding dimension is $e(S)=\min \left\{k: S=\left\langle a_{1}, \ldots, a_{k}\right\rangle\right\}$

Why care?

Numerical semigroups (and their generalizations to higher dimensions) relate to and inform

Why care?

Numerical semigroups (and their generalizations to higher dimensions) relate to and inform

- Optimization (feasibility of integer linear programs)

Why care?

Numerical semigroups (and their generalizations to higher dimensions) relate to and inform

- Optimization (feasibility of integer linear programs)
- Algebraic geometry, commutative algebra (toric varieties, toric local cohomology)

Why care?

Numerical semigroups (and their generalizations to higher dimensions) relate to and inform

- Optimization (feasibility of integer linear programs)
- Algebraic geometry, commutative algebra (toric varieties, toric local cohomology)
- Number theory (Frobenius problems)

Two coins

Sylvester 1884

If $\operatorname{gcd}(a, b)=1$ and $S=\langle a, b\rangle$, then
(1) Frobenius number of S is $(a-1)(b-1)-1$
(2) Genus of S is $\frac{1}{2}(a-1)(b-1)$

Two coins

Sylvester 1884

If $\operatorname{gcd}(a, b)=1$ and $S=\langle a, b\rangle$, then
(1) Frobenius number of S is $(a-1)(b-1)-1$
(2) Genus of S is $\frac{1}{2}(a-1)(b-1)$

If $a=3, b=5$, then $F=7, g=4$

Two coins

Sylvester 1884

If $\operatorname{gcd}(a, b)=1$ and $S=\langle a, b\rangle$, then
(1) Frobenius number of S is $(a-1)(b-1)-1$
(2) Genus of S is $\frac{1}{2}(a-1)(b-1)$

If $a=3, b=5$, then $F=7, g=4$

| \bullet |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |

If $a=6, b=11$, then $F=49, g=25$

Two coins

Sylvester 1884

If $\operatorname{gcd}(a, b)=1$ and $S=\langle a, b\rangle$, then
(1) Frobenius number of S is $(a-1)(b-1)-1$
(2) Genus of S is $\frac{1}{2}(a-1)(b-1)$

If $a=3, b=5$, then $F=7, g=4$

| \bullet |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |

If $a=6, b=11$, then $F=49, g=25$

S is symmetric: $x \rightarrow F-x$ gives bijection between holes and non-holes

Three Coins

$S=\langle a, b, c\rangle$, where $\operatorname{gcd}(a, b, c)=1$.

Three Coins

$S=\langle a, b, c\rangle$, where $\operatorname{gcd}(a, b, c)=1$.
(1) There is no polynomial or algebraic formula for $F(S)$ in terms of a, b, c [Curtis '90]

Three Coins

$S=\langle a, b, c\rangle$, where $\operatorname{gcd}(a, b, c)=1$.
(1) There is no polynomial or algebraic formula for $F(S)$ in terms of a, b, c [Curtis '90]
(2) Frobenius number of S can be any integer. [Rosales, García-Sánchez, García-García '04]

Three Coins

$S=\langle a, b, c\rangle$, where $\operatorname{gcd}(a, b, c)=1$.
(1) There is no polynomial or algebraic formula for $F(S)$ in terms of a, b, c [Curtis '90]
(2) Frobenius number of S can be any integer. [Rosales, García-Sánchez, García-García '04]
(3) $F(S) \geq \sqrt{3 a b c}-a-b-c$ [Davison '94]

Three Coins

$S=\langle a, b, c\rangle$, where $\operatorname{gcd}(a, b, c)=1$.
(1) There is no polynomial or algebraic formula for $F(S)$ in terms of a, b, c [Curtis '90]
(2) Frobenius number of S can be any integer. [Rosales, García-Sánchez, García-García '04]
(3) $F(S) \geq \sqrt{3 a b c}-a-b-c$ [Davison '94]
(9) On average, $F(S) \approx \frac{8}{\pi} \sqrt{a b c}-a-b-c$ [Ustinov '09]

Two Questions of Wilf

$S \subset \mathbb{N}$ a numerical semigroup with Frobenius number F :

Two Questions of Wilf

$S \subset \mathbb{N}$ a numerical semigroup with Frobenius number F : $C(S)=\{x \in \mathbb{N}: x \leq F\}$

Two Questions of Wilf

$S \subset \mathbb{N}$ a numerical semigroup with Frobenius number F : $C(S)=\{x \in \mathbb{N}: x \leq F\}$
$=$ smallest interval containing all holes

Two Questions of Wilf

$S \subset \mathbb{N}$ a numerical semigroup with Frobenius number F : $C(S)=\{x \in \mathbb{N}: x \leq F\}$
$=$ smallest interval containing all holes
$N(S)=\{x \in S: x \leq F\}$

Two Questions of Wilf

$S \subset \mathbb{N}$ a numerical semigroup with Frobenius number F :

$$
\begin{aligned}
C(S) & =\{x \in \mathbb{N}: x \leq F\} \\
& =\text { smallest interval containing all holes } \\
N(S) & =\{x \in S: x \leq F\} \\
& =\text { complement of holes in } C(S)
\end{aligned}
$$

Two Questions of Wilf

$S \subset \mathbb{N}$ a numerical semigroup with Frobenius number F :

$$
C(S)=\{x \in \mathbb{N}: x \leq F\}
$$

$=$ smallest interval containing all holes
$N(S)=\{x \in S: x \leq F\}$
$=$ complement of holes in $C(S)$

Wilf '78 (American Mathematical Monthly)

(1) (Wilf's conjecture) If $S=\left\langle a_{1}, \ldots, a_{k}\right\rangle$, is it true that

$$
\frac{\# N(S)}{\# C(S)}=\frac{F+1-g(S)}{F+1} \geq \frac{1}{k} ?
$$

Two Questions of Wilf

$S \subset \mathbb{N}$ a numerical semigroup with Frobenius number F :

$$
C(S)=\{x \in \mathbb{N}: x \leq F\}
$$

$=$ smallest interval containing all holes

$$
\begin{aligned}
N(S) & =\{x \in S: x \leq F\} \\
& =\text { complement of holes in } C(S)
\end{aligned}
$$

Wilf '78 (American Mathematical Monthly)

(1) (Wilf's conjecture) If $S=\left\langle a_{1}, \ldots, a_{k}\right\rangle$, is it true that $\frac{\# N(S)}{\# C(S)}=\frac{F+1-g(S)}{F+1} \geq \frac{1}{k}$?
(2) Let $N_{g}=$ number of semigroups with genus g. What is the growth rate of N_{g} ?

Wilf's conjecture for two coins

| \bullet |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |

Wilf's conjecture for two coins

\square

If $S=\langle a, b\rangle$ where $\operatorname{gcd}(a, b)=1$ (i.e. $k=2$), then

Wilf's conjecture for two coins

\square
If $S=\langle a, b\rangle$ where $\operatorname{gcd}(a, b)=1$ (i.e. $k=2$), then $\# C(S)=F+1=(a-1)(b-1)$

Wilf's conjecture for two coins

| \bullet |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |

If $S=\langle a, b\rangle$ where $\operatorname{gcd}(a, b)=1$ (i.e. $k=2$), then

$$
\begin{aligned}
& \# C(S)=F+1=(a-1)(b-1) \\
& \# N(S)=F+1-g(S)=\frac{1}{2} \# C(S)
\end{aligned}
$$

Wilf's conjecture for two coins

\square

If $S=\langle a, b\rangle$ where $\operatorname{gcd}(a, b)=1$ (i.e. $k=2$), then

$$
\begin{aligned}
& \# C(S)=F+1=(a-1)(b-1) \\
& \# N(S)=F+1-g(S)=\frac{1}{2} \# C(S)
\end{aligned}
$$

$$
\frac{\# N(S)}{\# C(S)}=\frac{1}{2}=\frac{1}{k}
$$

Wilf's conjecture for two coins

| \bullet |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |

If $S=\langle a, b\rangle$ where $\operatorname{gcd}(a, b)=1$ (i.e. $k=2$), then

$$
\begin{aligned}
& \# C(S)=F+1=(a-1)(b-1) \\
& \# N(S)=F+1-g(S)=\frac{1}{2} \# C(S) \\
& \frac{\# N(S)}{\# C(S)}=\frac{1}{2}=\frac{1}{k}
\end{aligned}
$$

Wilf's conjecture is satisfied with equality!

Wilf's conjecture for three coins

Example: $S=\langle 5,11,17\rangle$.

Wilf's conjecture for three coins

Example: $S=\langle 5,11,17\rangle$.

Wilf's conjecture for three coins

Example: $S=\langle 5,11,17\rangle$.

- $F=29, g=16$

Wilf's conjecture for three coins

Example: $S=\langle 5,11,17\rangle$.

- $F=29, g=16$
- $(F+1-g) /(F+1)=14 / 30>1 / 3=1 / k$

Wilf's conjecture for three coins

Example: $S=\langle 5,11,17\rangle$.

- $F=29, g=16$
- $(F+1-g) /(F+1)=14 / 30>1 / 3=1 / k$

All S with embedding dimension three satisfy Wilf's conjecture [Fröberg, Gottlieb, and Häggkvist '87].

Status of Wilf's conjecture

(1) (Standard) True if S is irreducible $\left(S \neq S_{1} \cap S_{2}\right.$ for semigroups $S \subsetneq S_{1}, S \subsetneq S_{2}$)

Status of Wilf's conjecture

(1) (Standard) True if S is irreducible $\left(S \neq S_{1} \cap S_{2}\right.$ for semigroups $S \subsetneq S_{1}, S \subsetneq S_{2}$)
(2) Asymptotically true [Zhai '11]: for fixed k and $\epsilon>0$ there are at most finitely many $S=\left\langle a_{1}, \ldots, a_{k}\right\rangle$ which do not satisfy

$$
\frac{\# C(S)}{\# N(S)} \geq \frac{1}{k}-\epsilon
$$

Status of Wilf's conjecture

(1) (Standard) True if S is irreducible $\left(S \neq S_{1} \cap S_{2}\right.$ for semigroups $S \subsetneq S_{1}, S \subsetneq S_{2}$)
(2) Asymptotically true [Zhai '11]: for fixed k and $\epsilon>0$ there are at most finitely many $S=\left\langle a_{1}, \ldots, a_{k}\right\rangle$ which do not satisfy

$$
\frac{\# C(S)}{\# N(S)} \geq \frac{1}{k}-\epsilon
$$

(3) True for $g \leq 60$ [Fromentin and Hivert '16] (finite check by computer computation)

Status of Wilf's conjecture

(1) (Standard) True if S is irreducible $\left(S \neq S_{1} \cap S_{2}\right.$ for semigroups $S \subsetneq S_{1}, S \subsetneq S_{2}$)
(2) Asymptotically true [Zhai '11]: for fixed k and $\epsilon>0$ there are at most finitely many $S=\left\langle a_{1}, \ldots, a_{k}\right\rangle$ which do not satisfy

$$
\frac{\# C(S)}{\# N(S)} \geq \frac{1}{k}-\epsilon
$$

(3) True for $g \leq 60$ [Fromentin and Hivert '16] (finite check by computer computation)
(9) True if $\min (S \backslash\{0\}) \leq 18$ [Bruns, García-Sánchez, O'Neill, Wilburne '19]

Growth of semigroups

$N_{g}=$ number of semigroups of genus g.

Growth of semigroups

$N_{g}=$ number of semigroups of genus g. $N_{0}=1$

Growth of semigroups

$$
\begin{aligned}
& N_{g}=\text { number of semigroups of genus } g . \\
& N_{1}=1
\end{aligned}
$$

Growth of semigroups

$N_{g}=$ number of semigroups of genus g. $N_{2}=2$

Growth of semigroups

$N_{g}=$ number of semigroups of genus g. $N_{3}=4$

Fibonacci-like growth

g	0	1	2	3	4	5	6	7	8	9	10	11
N_{g}	1	1	2	4	7	12	23	39	67	118	204	343

Fibonacci-like growth

g	0	1	2	3	4	5	6	7	8	9	10	11
N_{g}	1	1	2	4	7	12	23	39	67	118	204	343

Conjecture [Bras-Amóros '08]

$N_{g}=$ number of numerical semigroups of genus g.
(1) $N_{g} \geq N_{g-1}+N_{g-2}$
(2) $\lim _{g \rightarrow \infty} \frac{N_{g-1}+N_{g-2}}{N_{g}}=1$
(3) $\lim _{g \rightarrow \infty} \frac{N_{g}}{N_{g-1}}=\phi$ (the Golden Ratio)

Fibonacci-like growth

g	0	1	2	3	4	5	6	7	8	9	10	11
N_{g}	1	1	2	4	7	12	23	39	67	118	204	343

Conjecture [Bras-Amóros '08]

$N_{g}=$ number of numerical semigroups of genus g.
(1) $N_{g} \geq N_{g-1}+N_{g-2}$
(2) $\lim _{g \rightarrow \infty} \frac{N_{g-1}+N_{g-2}}{N_{g}}=1$
(3) $\lim _{g \rightarrow \infty} \frac{N_{g}}{N_{g-1}}=\phi$ (the Golden Ratio)

- (2) and (3) proved by Zhai (2013). (1) is still open
- $N_{g}>N_{g-1}$ still open (holds for $g \gg 0$)

Higher dimensions?

Generalized Numerical Semigroups

A generalized numerical semigroup (GNS) is a subset $S \subset \mathbb{N}^{d}$ closed under addition so that $\left|\mathbb{N}^{d} \backslash S\right|<\infty$.

Higher dimensions?

Generalized Numerical Semigroups

A generalized numerical semigroup (GNS) is a subset $S \subset \mathbb{N}^{d}$ closed under addition so that $\left|\mathbb{N}^{d} \backslash S\right|<\infty$.

If $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k} \in \mathbb{N}^{d}$ then $\left\langle\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\rangle=\left\{\sum \lambda_{i} \mathbf{a}_{i}: \lambda_{i} \in \mathbb{N}\right\}$.

Higher dimensions?

Generalized Numerical Semigroups

A generalized numerical semigroup (GNS) is a subset $S \subset \mathbb{N}^{d}$ closed under addition so that $\left|\mathbb{N}^{d} \backslash S\right|<\infty$.

If $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k} \in \mathbb{N}^{d}$ then $\left\langle\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\rangle=\left\{\sum \lambda_{i} \mathbf{a}_{i}: \lambda_{i} \in \mathbb{N}\right\}$. If $S \subset \mathbb{N}^{d}$ is a GNS then $S=\left\langle\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\rangle$ for some $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$.

Higher dimensions?

Generalized Numerical Semigroups

A generalized numerical semigroup (GNS) is a subset $S \subset \mathbb{N}^{d}$ closed under addition so that $\left|\mathbb{N}^{d} \backslash S\right|<\infty$.

If $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k} \in \mathbb{N}^{d}$ then $\left\langle\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\rangle=\left\{\sum \lambda_{i} \mathbf{a}_{i}: \lambda_{i} \in \mathbb{N}\right\}$. If $S \subset \mathbb{N}^{d}$ is a GNS then $S=\left\langle\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\rangle$ for some $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$.

- genus is $g(S)=\#\left(\mathbb{N}^{d} \backslash S\right)$.
- embedding dimension is $e(S)=\min \left\{k: S=\left\langle\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\rangle\right\}$.

Example

$$
S=\left\langle\mathbf{a}_{1}, \ldots, \mathbf{a}_{8}\right\rangle
$$

Example

$$
S=\left\langle\mathbf{a}_{1}, \ldots, \mathbf{a}_{8}\right\rangle
$$

$\mathbf{a}_{1}, \ldots, \mathbf{a}_{8}$ are columns of

$$
\left[\begin{array}{llllllll}
2 & 5 & 0 & 0 & 1 & 1 & 3 & 4 \\
0 & 0 & 2 & 3 & 5 & 6 & 1 & 1
\end{array}\right]
$$

Example

$S=\left\langle\mathbf{a}_{1}, \ldots, \mathbf{a}_{8}\right\rangle$
$\mathbf{a}_{1}, \ldots, \mathbf{a}_{8}$ are columns of

$$
\left[\begin{array}{llllllll}
2 & 5 & 0 & 0 & 1 & 1 & 3 & 4 \\
0 & 0 & 2 & 3 & 5 & 6 & 1 & 1
\end{array}\right]
$$

Example

$S=\left\langle\mathbf{a}_{1}, \ldots, \mathbf{a}_{8}\right\rangle$
$\mathbf{a}_{1}, \ldots, \mathbf{a}_{8}$ are columns of

$$
\left[\begin{array}{llllllll}
2 & 5 & 0 & 0 & 1 & 1 & 3 & 4 \\
0 & 0 & 2 & 3 & 5 & 6 & 1 & 1
\end{array}\right]
$$

$$
g=9
$$

Generalizing Wilf's Conjecture

If $S \subset \mathbb{N}$ is a numerical semigroup:

Generalizing Wilf's Conjecture

If $S \subset \mathbb{N}$ is a numerical semigroup:
$C(S)=\{x \in \mathbb{N}: x \leq F\}$
$=$ smallest interval containing all holes

Generalizing Wilf's Conjecture

If $S \subset \mathbb{N}$ is a numerical semigroup:

$$
\begin{aligned}
C(S) & =\{x \in \mathbb{N}: x \leq F\} \\
& =\text { smallest interval containing all holes } \\
N(S) & =\{x \in S: x \leq F\} \\
& =\text { complement of holes in } C(S)
\end{aligned}
$$

Generalizing Wilf's Conjecture

$$
\begin{aligned}
& \text { If } \begin{aligned}
& S \subset \mathbb{N}^{d} \text { is a GNS: } \\
& \begin{aligned}
C(S) & =\{x \in \mathbb{N}: x \leq F\} \\
& =\text { smallest interval containing all holes } \\
N(S) & =\{x \in S: x \leq F\} \\
& =\text { complement of holes in } C(S)
\end{aligned}
\end{aligned} . \begin{aligned}
& \\
&
\end{aligned}
\end{aligned}
$$

Generalizing Wilf's Conjecture

If $S \subset \mathbb{N}^{d}$ is a GNS:

$$
\begin{aligned}
C(S) & =\left\{\mathbf{x} \in \mathbb{N}^{d}: \mathbf{x} \leq \mathbf{h} \text { for some } \mathbf{h} \in \mathbb{N}^{d} \backslash S\right\} \\
& =\text { smallest order-closed subset of } \mathbb{N}^{d} \text { containing all holes } \\
N(S) & =\{x \in S: x \leq F\} \\
& =\text { complement of holes in } C(S)
\end{aligned}
$$

Generalizing Wilf's Conjecture

If $S \subset \mathbb{N}^{d}$ is a GNS:

$$
\begin{aligned}
C(S) & =\left\{\mathbf{x} \in \mathbb{N}^{d}: \mathbf{x} \leq \mathbf{h} \text { for some } \mathbf{h} \in \mathbb{N}^{d} \backslash S\right\} \\
& =\text { smallest order-closed subset of } \mathbb{N}^{d} \text { containing all holes }
\end{aligned}
$$

$N(S)=\left\{\mathbf{x} \in S: \mathbf{x} \leq \mathbf{h}\right.$ for some $\left.\mathbf{h} \in \mathbb{N}^{d} \backslash S\right\}$
$=$ complement of holes in $C(S)$

Generalizing Wilf's Conjecture

If $S \subset \mathbb{N}^{d}$ is a GNS:

$$
\begin{aligned}
C(S) & =\left\{\mathbf{x} \in \mathbb{N}^{d}: \mathbf{x} \leq \mathbf{h} \text { for some } \mathbf{h} \in \mathbb{N}^{d} \backslash S\right\} \\
& =\text { smallest order-closed subset of } \mathbb{N}^{d} \text { containing all holes } \\
N(S) & =\left\{\mathbf{x} \in S: \mathbf{x} \leq \mathbf{h} \text { for some } \mathbf{h} \in \mathbb{N}^{d} \backslash S\right\} \\
& =\text { complement of holes in } C(S)
\end{aligned}
$$

Generalized Wilf Conjecture [Cisto,-, Failla, Flores, Peterson, Utano '19]
If $S \subset \mathbb{N}^{d}$ is a $G N S$ with $S=\left\langle\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\rangle$ then

$$
\frac{\# N(S)}{\# C(S)} \geq \frac{d}{k}
$$

Example

Example

Example

Example

Example

Tight Example

Tight Example

$$
\begin{aligned}
& S=\left\langle\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}\right\rangle \\
& \text { columns of }
\end{aligned}
$$

$$
\left[\begin{array}{llll}
2 & 3 & 0 & 1 \\
0 & 0 & 1 & 4
\end{array}\right]
$$

Tight Example

$$
\begin{aligned}
& S=\left\langle\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}\right\rangle \\
& \text { columns of }
\end{aligned}
$$

$$
\left[\begin{array}{llll}
2 & 3 & 0 & 1 \\
0 & 0 & 1 & 4
\end{array}\right]
$$

$L=$ jagged line

Tight Example

$$
\begin{aligned}
& S=\left\langle\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}\right\rangle \\
& \text { columns of }
\end{aligned}
$$

$$
\left[\begin{array}{llll}
2 & 3 & 0 & 1 \\
0 & 0 & 1 & 4
\end{array}\right]
$$

$L=$ jagged line $\# C(S)=8$
$\# N(S)=4$

Tight Example

$$
\begin{aligned}
& S=\left\langle\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}\right\rangle \\
& \text { columns of }
\end{aligned}
$$

$$
\left[\begin{array}{llll}
2 & 3 & 0 & 1 \\
0 & 0 & 1 & 4
\end{array}\right]
$$

$L=$ jagged line $\# C(S)=8$ $\# N(S)=4$
$\frac{\# N(S)}{\# C(S)}=\frac{4}{8}=\frac{2}{4}=\frac{d}{k}$

Proven cases of Generalized Wilf Conjecture

[Cisto,-,,Failla,Flores,Peterson,Utano '19]
If $S \subset \mathbb{N}^{d}$ is a GNS, the Generalized Wilf Conjecture is true if

Proven cases of Generalized Wilf Conjecture

[Cisto,-,Failla,Flores, Peterson,Utano '19]
If $S \subset \mathbb{N}^{d}$ is a GNS, the Generalized Wilf Conjecture is true if
© S is irreducible

Proven cases of Generalized Wilf Conjecture

[Cisto,-,Failla,Flores, Peterson,Utano '19]
If $S \subset \mathbb{N}^{d}$ is a GNS, the Generalized Wilf Conjecture is true if
© S is irreducible
(2) S satisfies $\# N(S)=1$.

Proven cases of Generalized Wilf Conjecture

[Cisto,-,Failla,Flores, Peterson,Utano '19]
If $S \subset \mathbb{N}^{d}$ is a GNS, the Generalized Wilf Conjecture is true if
© S is irreducible
(2) satisfies $\# N(S)=1$.

- $S \subset \mathbb{N}^{2}$ and $g \leq 13$ (computer computation).

Proven cases of Generalized Wilf Conjecture

[Cisto,-,Failla,Flores,Peterson,Utano '19]

If $S \subset \mathbb{N}^{d}$ is a GNS, the Generalized Wilf Conjecture is true if
(1) S is irreducible
(2) S satisfies $\# N(S)=1$.
(3) $S \subset \mathbb{N}^{2}$ and $g \leq 13$ (computer computation).

Examples with $\# N(S)=1$:

Proven cases of Generalized Wilf Conjecture

[Cisto,-,Failla,Flores,Peterson,Utano '19]

If $S \subset \mathbb{N}^{d}$ is a GNS, the Generalized Wilf Conjecture is true if
(1) S is irreducible
(2) S satisfies $\# N(S)=1$.
(3) $S \subset \mathbb{N}^{2}$ and $g \leq 13$ (computer computation).

Examples with $\# N(S)=1$:

Proven cases of Generalized Wilf Conjecture

[Cisto,-,Failla,Flores,Peterson,Utano '19]

If $S \subset \mathbb{N}^{d}$ is a GNS, the Generalized Wilf Conjecture is true if
(1) S is irreducible
(2) S satisfies $\# N(S)=1$.
(3) $S \subset \mathbb{N}^{2}$ and $g \leq 13$ (computer computation).

Examples with $\# N(S)=1$:

Proven cases of Generalized Wilf Conjecture

[Cisto,-,Failla,Flores,Peterson,Utano '19]

If $S \subset \mathbb{N}^{d}$ is a GNS, the Generalized Wilf Conjecture is true if
(1) S is irreducible
(2) S satisfies $\# N(S)=1$.
(3) $S \subset \mathbb{N}^{2}$ and $g \leq 13$ (computer computation).

Examples with $\# N(S)=1$:

Affine semigroups

Affine semigroup

If A is a $d \times k$ matrix with integral entries, then $\left\{A \mathbf{x}: \mathbf{x} \in \mathbb{N}^{k}\right\}$ is an affine semigroup.

Affine semigroups

Affine semigroup

If A is a $d \times k$ matrix with integral entries, then $\left\{A \mathbf{x}: \mathbf{x} \in \mathbb{N}^{k}\right\}$ is an affine semigroup.

Holes of affine semigroups

If $S=\left\{A \mathbf{x}: \mathbf{x} \in \mathbb{N}^{k}\right\} \subset \mathbb{N}^{d}$, the holes of S are vectors $\mathbf{v} \in \mathbb{N}^{d}$ so that $k \mathbf{v} \in S$ for some $k \in \mathbb{N}$.

Affine semigroups

Affine semigroup

If A is a $d \times k$ matrix with integral entries, then $\left\{A \mathbf{x}: \mathbf{x} \in \mathbb{N}^{k}\right\}$ is an affine semigroup.

Holes of affine semigroups

If $S=\left\{A \mathbf{x}: \mathbf{x} \in \mathbb{N}^{k}\right\} \subset \mathbb{N}^{d}$, the holes of S are vectors $\mathbf{v} \in \mathbb{N}^{d}$ so that $k v \in S$ for some $k \in \mathbb{N}$.

- An affine semigroup with finitely many holes naturally generalizes a GNS.

Affine semigroups

Affine semigroup

If A is a $d \times k$ matrix with integral entries, then $\left\{A \mathbf{x}: \mathbf{x} \in \mathbb{N}^{k}\right\}$ is an affine semigroup.

Holes of affine semigroups

If $S=\left\{A \mathbf{x}: \mathbf{x} \in \mathbb{N}^{k}\right\} \subset \mathbb{N}^{d}$, the holes of S are vectors $\mathbf{v} \in \mathbb{N}^{d}$ so that $k \mathbf{v} \in S$ for some $k \in \mathbb{N}$.

- An affine semigroup with finitely many holes naturally generalizes a GNS.
- These are called \mathcal{C}-semigroups in [García-García, Marín-Aragón, Vigneron-Tenorio '16]

Affine semigroups

Affine semigroup

If A is a $d \times k$ matrix with integral entries, then $\left\{A \mathbf{x}: \mathbf{x} \in \mathbb{N}^{k}\right\}$ is an affine semigroup.

Holes of affine semigroups

If $S=\left\{A \mathbf{x}: \mathbf{x} \in \mathbb{N}^{k}\right\} \subset \mathbb{N}^{d}$, the holes of S are vectors $\mathbf{v} \in \mathbb{N}^{d}$ so that $k \mathbf{v} \in S$ for some $k \in \mathbb{N}$.

- An affine semigroup with finitely many holes naturally generalizes a GNS.
- These are called \mathcal{C}-semigroups in [García-García, Marín-Aragón, Vigneron-Tenorio '16]
- Another extension of Wilf's conjecture is given which depends on a monomial order and does not incorporate dimension

An affine semigroup and its holes

$$
\begin{aligned}
S & =\left\{A \mathbf{x}: \mathbf{x} \in \mathbb{N}^{k}\right\} \\
A & =\left[\begin{array}{lllllll}
3 & 1 & 2 & 2 & 5 & 1 & 1 \\
1 & 5 & 2 & 5 & 2 & 3 & 4
\end{array}\right]
\end{aligned}
$$

An affine semigroup and its holes

$$
\begin{aligned}
S & =\left\{A \mathbf{x}: \mathbf{x} \in \mathbb{N}^{k}\right\} \\
A & =\left[\begin{array}{lllllll}
3 & 1 & 2 & 2 & 5 & 1 & 1 \\
1 & 5 & 2 & 5 & 2 & 3 & 4
\end{array}\right]
\end{aligned}
$$

An affine semigroup and its holes

$$
\begin{aligned}
& S=\left\{A x: x \in \mathbb{N}^{k}\right\} \\
& A=\left[\begin{array}{lllllll}
3 & 1 & 2 & 2 & 5 & 1 & 1 \\
1 & 5 & 2 & 5 & 2 & 3 & 4
\end{array}\right] \\
& g=22
\end{aligned}
$$

Concluding questions

(1) Frobenius numbers for affine semigroups - still widely open [Aliev, De Loera, Louveaux '16]

Concluding questions

(1) Frobenius numbers for affine semigroups - still widely open [Aliev, De Loera, Louveaux '16]
(2) Is there a version of Wilf's conjecture for arbitrary affine semigroups (with infinitely many holes)?

Concluding questions

(1) Frobenius numbers for affine semigroups - still widely open [Aliev, De Loera, Louveaux '16]
(2) Is there a version of Wilf's conjecture for arbitrary affine semigroups (with infinitely many holes)?
(3) Fix a pointed cone \mathcal{C}. Let $N_{\mathcal{C}, g}$ be the number of affine semigroups with g holes and conical hull \mathcal{C}. What is the rate of growth of $N_{\mathcal{C}, g}$ with respect to g ? (first addressed for $\mathcal{C}=\mathbb{N}^{d}$ in [Failla, Peterson, and Utano '16])

