Extending Wilf's Conjecture

Michael DiPasquale Colorado State University

University of North Carolina at Charlotte Colloquium

The Frobenius Coin Problem

Suppose I have coins of k different values a_1, \ldots, a_k , with an infinite supply of coins of each value. Which amounts of money can I make?

The Frobenius Coin Problem

Suppose I have coins of k different values a_1, \ldots, a_k , with an infinite supply of coins of each value. Which amounts of money can I make?

If $a_1 = 3$, $a_2 = 5$, can make the amounts $\{0, 3, 5, 6, 8, 9, 10, \dots\}$.

The Frobenius Coin Problem

Suppose I have coins of k different values a_1, \ldots, a_k , with an infinite supply of coins of each value. Which amounts of money can I make?

If $a_1 = 3$, $a_2 = 5$, can make the amounts $\{0, 3, 5, 6, 8, 9, 10, \dots\}$.

						•				
0	1	2	3	4	5	6	7	8	9	10

The Frobenius Coin Problem

Suppose I have coins of k different values a_1, \ldots, a_k , with an infinite supply of coins of each value. Which amounts of money can I make?

If $a_1 = 3$, $a_2 = 5$, can make the amounts $\{0, 3, 5, 6, 8, 9, 10, \dots\}$.

•	•	•	•	•	•	•	•	•	•	•
0	1	2	3	4	5	6	7	8	9	10

If $a_1 = 5$, $a_2 = 11$, $a_3 = 17$, can make all amounts > 29, and 14 values < 29

The Frobenius Coin Problem

Suppose I have coins of k different values a_1, \ldots, a_k , with an infinite supply of coins of each value. Which amounts of money can I make?

If $a_1 = 3$, $a_2 = 5$, can make the amounts $\{0, 3, 5, 6, 8, 9, 10, \dots\}$.

The Frobenius Coin Problem

Suppose I have coins of k different values a_1, \ldots, a_k , with an infinite supply of coins of each value. Which amounts of money can I make?

If $a_1 = 3$, $a_2 = 5$, can make the amounts $\{0, 3, 5, 6, 8, 9, 10, \dots\}$.

0 1 2 3 4 5 6 7 8 9 10
If
$$a_1 = 5, a_2 = 11, a_3 = 17$$
, can make all amounts > 29, and 14
values < 29
0 6 12 18 24 30 36
To eventually make all amounts, need $gcd(a_1, ..., a_n) = 1$.

Numerical Semigroups

Convention: $\mathbb{N} = \{0, 1, 2, 3, \dots \}.$

A numerical semigroup is a subset $S \subset \mathbb{N}$ closed under addition so that $|\mathbb{N} \setminus S| < \infty$.

Numerical Semigroups

Convention: $\mathbb{N} = \{0, 1, 2, 3, \dots \}.$

A numerical semigroup is a subset $S \subset \mathbb{N}$ closed under addition so that $|\mathbb{N} \setminus S| < \infty$.

Given $a_1, \ldots, a_k \in \mathbb{N}$, $\langle a_1, \ldots, a_k \rangle = \{\sum \lambda_i a_i : \lambda_i \in \mathbb{N}\}$

Numerical Semigroups

Convention: $\mathbb{N} = \{0, 1, 2, 3, \cdots\}.$

A numerical semigroup is a subset $S \subset \mathbb{N}$ closed under addition so that $|\mathbb{N} \setminus S| < \infty$.

Given $a_1, \ldots, a_k \in \mathbb{N}$, $\langle a_1, \ldots, a_k \rangle = \{\sum \lambda_i a_i : \lambda_i \in \mathbb{N}\}$

• $\operatorname{gcd}(a_1,\ldots,a_k) = 1 \to \langle a_1,\ldots,a_k \rangle$ a numerical semigroup

Numerical Semigroups

Convention: $\mathbb{N} = \{0, 1, 2, 3, \dots \}.$

A numerical semigroup is a subset $S \subset \mathbb{N}$ closed under addition so that $|\mathbb{N} \setminus S| < \infty$.

Given $a_1, \ldots, a_k \in \mathbb{N}$, $\langle a_1, \ldots, a_k \rangle = \{\sum \lambda_i a_i : \lambda_i \in \mathbb{N}\}$

- $gcd(a_1, \ldots, a_k) = 1 \rightarrow \langle a_1, \ldots, a_k \rangle$ a numerical semigroup
- S a numerical semigroup $\rightarrow S = \langle a_1, \dots, a_k \rangle$ for some a_1, \dots, a_k .

Numerical Semigroups

Convention: $\mathbb{N} = \{0, 1, 2, 3, \cdots\}.$

A numerical semigroup is a subset $S \subset \mathbb{N}$ closed under addition so that $|\mathbb{N} \setminus S| < \infty$.

Given
$$a_1, \ldots, a_k \in \mathbb{N}$$
, $\langle a_1, \ldots, a_k \rangle = \{\sum \lambda_i a_i : \lambda_i \in \mathbb{N}\}$

- $gcd(a_1, \ldots, a_k) = 1 \rightarrow \langle a_1, \ldots, a_k \rangle$ a numerical semigroup
- S a numerical semigroup $\rightarrow S = \langle a_1, \dots, a_k \rangle$ for some a_1, \dots, a_k .
- genus is $g(S) = \#(\mathbb{N} \setminus S)$
- Frobenius number is $F(S) = \max(\mathbb{N} \setminus S)$
- embedding dimension is $e(S) = \min\{k : S = \langle a_1, \dots, a_k \rangle\}$

Why care?

Numerical semigroups (and their generalizations to higher dimensions) relate to and inform

Why care?

Numerical semigroups (and their generalizations to higher dimensions) relate to and inform

• Optimization (feasibility of integer linear programs)

Why care?

Numerical semigroups (and their generalizations to higher dimensions) relate to and inform

- Optimization (feasibility of integer linear programs)
- Algebraic geometry, commutative algebra (toric varieties, toric local cohomology)

Why care?

Numerical semigroups (and their generalizations to higher dimensions) relate to and inform

- Optimization (feasibility of integer linear programs)
- Algebraic geometry, commutative algebra (toric varieties, toric local cohomology)
- Number theory (Frobenius problems)

Two coins

Sylvester 1884

If
$$gcd(a, b) = 1$$
 and $S = \langle a, b \rangle$, then

• Frobenius number of S is (a-1)(b-1)-1

2 Genus of *S* is
$$\frac{1}{2}(a-1)(b-1)$$

Two coins

Sylvester 1884

If
$$gcd(a, b) = 1$$
 and $S = \langle a, b \rangle$, then

• Frobenius number of S is (a-1)(b-1)-1

2 Genus of *S* is
$$\frac{1}{2}(a-1)(b-1)$$

If
$$a = 3, b = 5$$
, then $F = 7, g = 4$

Two coins

Sylvester 1884

If
$$gcd(a, b) = 1$$
 and $S = \langle a, b \rangle$, then
Frobenius number of S is $(a - 1)(b - 1) - 1$
Genus of S is $\frac{1}{2}(a - 1)(b - 1)$
If $a = 3, b = 5$, then $F = 7, g = 4$
 $a = 3, b = 5$, then $F = 7, g = 4$
 $a = 6, b = 11$, then $F = 49, g = 25$
 $a = 6, b = 11$, then $F = 49, g = 25$

Two coins

Sylvester 1884

non-holes

If
$$gcd(a, b) = 1$$
 and $S = \langle a, b \rangle$, then
Frobenius number of S is $(a - 1)(b - 1) - 1$
Genus of S is $\frac{1}{2}(a - 1)(b - 1)$
If $a = 3, b = 5$, then $F = 7, g = 4$
 $a = 5, b = 5$, then $F = 7, g = 4$
 $a = 6, b = 11$, then $F = 49, g = 25$
 $a = 6, b = 11$, then $F = 49, g = 25$
 $a = 5, b = 11$, then $F = 49, g = 25$
 $a = 5, b = 11$, then $F = 49, g = 25$
 $a = 5, b = 11$, then $F = 49, g = 25$
 $a = 5, b = 11$, then $F = 49, g = 25$
 $a = 5, b = 11$, then $F = 49, g = 25$
 $a = 5, b = 11$, then $F = 49, g = 25$
 $a = 5, b = 11$, then $F = 49, g = 25$
 $a = 5, b = 11$, then $F = 49, g = 25$
 $a = 5, b = 11$, then $F = 49, g = 25$
 $a = 5, b = 11$, then $F = 49, g = 25$
 $a = 5, b = 11$, then $F = 49, g = 25$
 $a = 5, b = 11$, then $F = 49, g = 25$
 $a = 5, b = 10$
 $a = 5, b = 11$, then $F = 49, g = 25$
 $a = 5, b = 10$
 $a = 5, b = 10$
 $b = 1$

$$S = \langle a, b, c \rangle$$
, where $gcd(a, b, c) = 1$.

- $S = \langle a, b, c \rangle$, where gcd(a, b, c) = 1.
 - There is no polynomial or algebraic formula for F(S) in terms of a, b, c [Curtis '90]

- $S = \langle a, b, c \rangle$, where gcd(a, b, c) = 1.
 - There is no polynomial or algebraic formula for F(S) in terms of a, b, c [Curtis '90]
 - Frobenius number of S can be any integer. [Rosales, García-Sánchez, García-García '04]

- $S = \langle a, b, c \rangle$, where gcd(a, b, c) = 1.
 - There is no polynomial or algebraic formula for F(S) in terms of a, b, c [Curtis '90]
 - Frobenius number of S can be any integer. [Rosales, García-Sánchez, García-García '04]
 - $F(S) \ge \sqrt{3abc} a b c$ [Davison '94]

- $S = \langle a, b, c \rangle$, where gcd(a, b, c) = 1.
 - There is no polynomial or algebraic formula for F(S) in terms of a, b, c [Curtis '90]
 - Frobenius number of S can be any integer. [Rosales, García-Sánchez, García-García '04]
 - $F(S) \ge \sqrt{3abc} a b c$ [Davison '94]
 - On average, $F(S) \approx \frac{8}{\pi} \sqrt{abc} a b c$ [Ustinov '09]

Two Questions of Wilf

 $S \subset \mathbb{N}$ a numerical semigroup with Frobenius number F:

Two Questions of Wilf

 $S \subset \mathbb{N}$ a numerical semigroup with Frobenius number F:

 $C(S) = \{x \in \mathbb{N} : x \le F\}$

Two Questions of Wilf

 $S \subset \mathbb{N}$ a numerical semigroup with Frobenius number F:

$$C(S) = \{x \in \mathbb{N} : x \le F\}$$

= smallest interval containing all holes

Two Questions of Wilf

 $S \subset \mathbb{N}$ a numerical semigroup with Frobenius number F:

$$C(S) = \{x \in \mathbb{N} : x \le F\}$$

= smallest interval containing all holes

$$N(S) = \{x \in S : x \leq F\}$$

Two Questions of Wilf

 $S \subset \mathbb{N}$ a numerical semigroup with Frobenius number F:

$$C(S) = \{x \in \mathbb{N} : x \le F\}$$

= smallest interval containing all holes
$$N(S) = \{x \in S : x \le F\}$$

= complement of holes in C(S)

Two Questions of Wilf

 $S \subset \mathbb{N}$ a numerical semigroup with Frobenius number F:

$$C(S) = \{x \in \mathbb{N} : x \le F\}$$

= smallest interval containing all holes

$$N(S) = \{x \in S : x \le F\}$$

= complement of holes in $C(S)$

Wilf '78 (American Mathematical Monthly)

• (Wilf's conjecture) If
$$S = \langle a_1, \dots, a_k \rangle$$
, is it true that

$$\frac{\#N(S)}{\#C(S)} = \frac{F+1-g(S)}{F+1} \ge \frac{1}{k}?$$

Two Questions of Wilf

 $S \subset \mathbb{N}$ a numerical semigroup with Frobenius number F:

$$C(S) = \{x \in \mathbb{N} : x \le F\}$$

= smallest interval containing all holes

$$N(S) = \{x \in S : x \le F\}$$

= complement of holes in $C(S)$

Wilf '78 (American Mathematical Monthly)

• (Wilf's conjecture) If
$$S = \langle a_1, \dots, a_k \rangle$$
, is it true that

$$\frac{\#N(S)}{\#C(S)} = \frac{F+1-g(S)}{F+1} \ge \frac{1}{k}?$$

Let N_g = number of semigroups with genus g. What is the growth rate of N_g?

Wilf's conjecture for two coins

Wilf's conjecture for two coins

If $S = \langle a, b \rangle$ where gcd(a, b) = 1 (i.e. k = 2), then

Wilf's conjecture for two coins

If $S = \langle a, b \rangle$ where gcd(a, b) = 1 (i.e. k = 2), then

$$\#C(S) = F + 1 = (a - 1)(b - 1)$$

Wilf's conjecture for two coins

If $S = \langle a, b \rangle$ where gcd(a, b) = 1 (i.e. k = 2), then

$$\#C(S) = F + 1 = (a - 1)(b - 1) \#N(S) = F + 1 - g(S) = \frac{1}{2} \#C(S)$$

Wilf's conjecture for two coins

If $S = \langle a, b \rangle$ where gcd(a, b) = 1 (i.e. k = 2), then

$$\#C(S) = F + 1 = (a - 1)(b - 1) \#N(S) = F + 1 - g(S) = \frac{1}{2} \#C(S)$$

$$\frac{\#N(S)}{\#C(S)} = \frac{1}{2} = \frac{1}{k}$$

Wilf's conjecture for two coins

If $S = \langle a, b \rangle$ where gcd(a, b) = 1 (i.e. k = 2), then

$$\#C(S) = F + 1 = (a - 1)(b - 1) \#N(S) = F + 1 - g(S) = \frac{1}{2} \#C(S)$$

$$\frac{\#N(S)}{\#C(S)} = \frac{1}{2} = \frac{1}{k}$$

Wilf's conjecture is satisfied with equality!

Wilf's conjecture for three coins

Example: $S = \langle 5, 11, 17 \rangle$.

Wilf's conjecture for three coins

Example: $S = \langle 5, 11, 17 \rangle$.

• • • • •	• • • • •	• • • • • •	• • • • • •		• • • • • •	• • •
0	6	12	18	24	30	36

Wilf's conjecture for three coins

Example: $S = \langle 5, 11, 17 \rangle$.

			• • • • • •		• • • • • •	• • •
0	6	12	18	24	30	36

• F = 29, g = 16

Wilf's conjecture for three coins

Example: $S = \langle 5, 11, 17 \rangle$.

Wilf's conjecture for three coins

Example: $S = \langle 5, 11, 17 \rangle$. 0 6 12 18 24 30 36 • F = 29, g = 16• (F + 1 - g)/(F + 1) = 14/30 > 1/3 = 1/k

All *S* with embedding dimension three satisfy Wilf's conjecture [Fröberg, Gottlieb, and Häggkvist '87].

Status of Wilf's conjecture

(Standard) True if S is irreducible (S ≠ S₁ ∩ S₂ for semigroups S ⊊ S₁, S ⊊ S₂)

Status of Wilf's conjecture

- (Standard) True if S is *irreducible* (S ≠ S₁ ∩ S₂ for semigroups S ⊊ S₁, S ⊊ S₂)
- **2** Asymptotically true [Zhai '11]: for fixed k and $\epsilon > 0$ there are at most finitely many $S = \langle a_1, \ldots, a_k \rangle$ which do not satisfy

$$\frac{\#C(S)}{\#N(S)} \geq \frac{1}{k} - \epsilon$$

Status of Wilf's conjecture

- (Standard) True if S is *irreducible* (S ≠ S₁ ∩ S₂ for semigroups S ⊊ S₁, S ⊊ S₂)
- **2** Asymptotically true [Zhai '11]: for fixed k and $\epsilon > 0$ there are at most finitely many $S = \langle a_1, \ldots, a_k \rangle$ which do not satisfy

$$\frac{\#C(S)}{\#N(S)} \geq \frac{1}{k} - \epsilon$$

 True for g ≤ 60 [Fromentin and Hivert '16] (finite check by computer computation)

Status of Wilf's conjecture

- (Standard) True if S is *irreducible* (S ≠ S₁ ∩ S₂ for semigroups S ⊊ S₁, S ⊊ S₂)
- **2** Asymptotically true [Zhai '11]: for fixed k and $\epsilon > 0$ there are at most finitely many $S = \langle a_1, \ldots, a_k \rangle$ which do not satisfy

$$\frac{\#C(S)}{\#N(S)} \geq \frac{1}{k} - \epsilon$$

- True for g ≤ 60 [Fromentin and Hivert '16] (finite check by computer computation)
- True if min(S \ {0}) ≤ 18 [Bruns, García-Sánchez, O'Neill, Wilburne '19]

Growth of semigroups

 N_g = number of semigroups of genus g.

Growth of semigroups

 $N_g =$ number of semigroups of genus g. $N_0 = 1$

Growth of semigroups

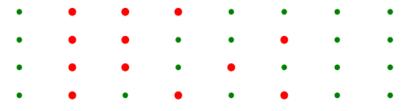
 $N_g =$ number of semigroups of genus g. $N_1 = 1$

Growth of semigroups

 $N_g =$ number of semigroups of genus g. $N_2 = 2$

Growth of semigroups

 N_g = number of semigroups of genus g. $N_3 = 4$



Fibonacci-like growth

												11
Ng	1	1	2	4	7	12	23	39	67	118	204	343

Fibonacci-like growth

												11
Ng	1	1	2	4	7	12	23	39	67	118	204	343

Conjecture [Bras-Amóros '08]

 N_g = number of numerical semigroups of genus g.

$$N_{g} \geq N_{g-1} + N_{g-2}$$

$$\lim_{g \to \infty} \frac{N_{g-1} + N_{g-2}}{N_{g}} = 1$$

$$\lim_{g \to \infty} \frac{N_{g}}{N_{g-1}} = \phi \text{ (the Golden Ratio})$$

Fibonacci-like growth

												11
Ng	1	1	2	4	7	12	23	39	67	118	204	343

Conjecture [Bras-Amóros '08]

 N_g = number of numerical semigroups of genus g.

- (2) and (3) proved by Zhai (2013). (1) is still open
- $N_g > N_{g-1}$ still open (holds for $g \gg 0$)

Higher dimensions?

Generalized Numerical Semigroups

A generalized numerical semigroup (GNS) is a subset $S \subset \mathbb{N}^d$ closed under addition so that $|\mathbb{N}^d \setminus S| < \infty$.

Higher dimensions?

Generalized Numerical Semigroups

A generalized numerical semigroup (GNS) is a subset $S \subset \mathbb{N}^d$ closed under addition so that $|\mathbb{N}^d \setminus S| < \infty$.

If $\mathbf{a}_1, \ldots, \mathbf{a}_k \in \mathbb{N}^d$ then $\langle \mathbf{a}_1, \ldots, \mathbf{a}_k \rangle = \{ \sum \lambda_i \mathbf{a}_i : \lambda_i \in \mathbb{N} \}.$

Higher dimensions?

Generalized Numerical Semigroups

A generalized numerical semigroup (GNS) is a subset $S \subset \mathbb{N}^d$ closed under addition so that $|\mathbb{N}^d \setminus S| < \infty$.

If
$$\mathbf{a}_1, \ldots, \mathbf{a}_k \in \mathbb{N}^d$$
 then $\langle \mathbf{a}_1, \ldots, \mathbf{a}_k \rangle = \{ \sum \lambda_i \mathbf{a}_i : \lambda_i \in \mathbb{N} \}.$

If $S \subset \mathbb{N}^d$ is a GNS then $S = \langle \mathbf{a}_1, \dots, \mathbf{a}_k \rangle$ for some $\mathbf{a}_1, \dots, \mathbf{a}_k$.

Higher dimensions?

Generalized Numerical Semigroups

A generalized numerical semigroup (GNS) is a subset $S \subset \mathbb{N}^d$ closed under addition so that $|\mathbb{N}^d \setminus S| < \infty$.

If
$$\mathbf{a}_1, \ldots, \mathbf{a}_k \in \mathbb{N}^d$$
 then $\langle \mathbf{a}_1, \ldots, \mathbf{a}_k \rangle = \{ \sum \lambda_i \mathbf{a}_i : \lambda_i \in \mathbb{N} \}.$

If $S \subset \mathbb{N}^d$ is a GNS then $S = \langle \mathbf{a}_1, \dots, \mathbf{a}_k \rangle$ for some $\mathbf{a}_1, \dots, \mathbf{a}_k$.

• genus is
$$g(S) = #(\mathbb{N}^d \setminus S)$$
.

• embedding dimension is $e(S) = \min\{k : S = \langle \mathbf{a}_1, \dots, \mathbf{a}_k \rangle\}.$

Example

$$S = \langle \mathbf{a}_1, \dots, \mathbf{a}_8 \rangle$$

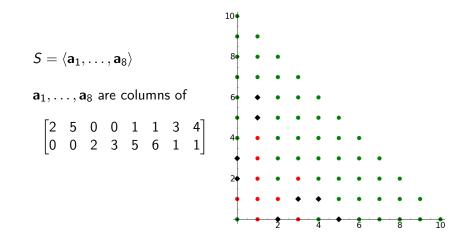
Example

$$S = \langle \mathbf{a}_1, \ldots, \mathbf{a}_8 \rangle$$

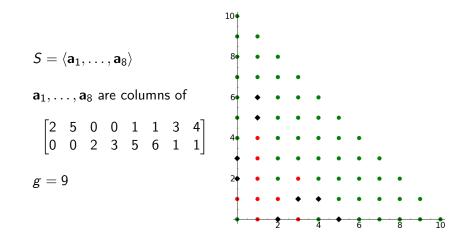
 a_1, \ldots, a_8 are columns of

$$\begin{bmatrix} 2 & 5 & 0 & 0 & 1 & 1 & 3 & 4 \\ 0 & 0 & 2 & 3 & 5 & 6 & 1 & 1 \end{bmatrix}$$

Example



Example



Generalizing Wilf's Conjecture

If $S \subset \mathbb{N}$ is a numerical semigroup:

Generalizing Wilf's Conjecture

If $S \subset \mathbb{N}$ is a numerical semigroup:

$$C(S) = \{x \in \mathbb{N} : x \le F\}$$

= smallest interval containing all holes

Generalizing Wilf's Conjecture

If $S \subset \mathbb{N}$ is a numerical semigroup:

$$C(S) = \{x \in \mathbb{N} : x \le F\}$$

= smallest interval containing all holes
$$N(S) = \{x \in S : x \le F\}$$

= complement of holes in $C(S)$

Generalizing Wilf's Conjecture

If $S \subset \mathbb{N}^d$ is a GNS: $C(S) = \{x \in \mathbb{N} : x \le F\}$ = smallest interval containing all holes $N(S) = \{x \in S : x \le F\}$ = complement of holes in C(S)

Generalizing Wilf's Conjecture

If $S \subset \mathbb{N}^d$ is a GNS: $C(S) = \{ \mathbf{x} \in \mathbb{N}^d : \mathbf{x} \le \mathbf{h} \text{ for some } \mathbf{h} \in \mathbb{N}^d \setminus S \}$ $= \text{smallest order-closed subset of } \mathbb{N}^d \text{ containing all holes}$ $N(S) = \{ x \in S : x \le F \}$ = complement of holes in C(S)

Generalizing Wilf's Conjecture

If $S \subset \mathbb{N}^d$ is a GNS: $C(S) = \{ \mathbf{x} \in \mathbb{N}^d : \mathbf{x} \le \mathbf{h} \text{ for some } \mathbf{h} \in \mathbb{N}^d \setminus S \}$ $= \text{smallest order-closed subset of } \mathbb{N}^d \text{ containing all holes}$ $N(S) = \{ \mathbf{x} \in S : \mathbf{x} \le \mathbf{h} \text{ for some } \mathbf{h} \in \mathbb{N}^d \setminus S \}$ = complement of holes in C(S)

Generalizing Wilf's Conjecture

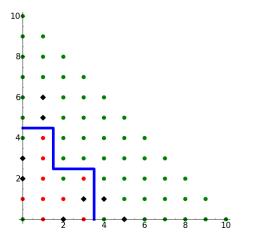
If
$$S \subset \mathbb{N}^d$$
 is a GNS:
 $C(S) = \{ \mathbf{x} \in \mathbb{N}^d : \mathbf{x} \le \mathbf{h} \text{ for some } \mathbf{h} \in \mathbb{N}^d \setminus S \}$
 $= \text{ smallest order-closed subset of } \mathbb{N}^d \text{ containing all holes}$
 $N(S) = \{ \mathbf{x} \in S : \mathbf{x} \le \mathbf{h} \text{ for some } \mathbf{h} \in \mathbb{N}^d \setminus S \}$
 $= \text{ complement of holes in } C(S)$

Generalized Wilf Conjecture [Cisto,-, Failla, Flores, Peterson, Utano '19]

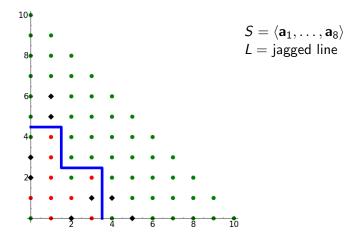
If
$$S \subset \mathbb{N}^d$$
 is a GNS with $S = \langle \mathbf{a}_1, \dots, \mathbf{a}_k
angle$ then

$$\frac{\#N(S)}{\#C(S)} \geq \frac{d}{k}$$

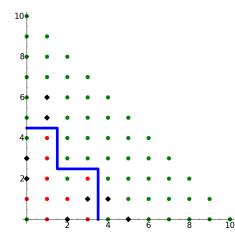
Example



Example

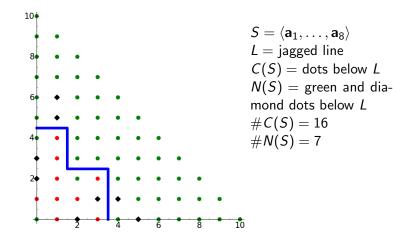


Example

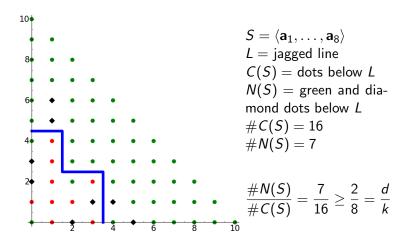


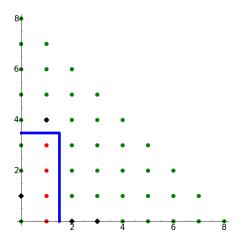
 $S = \langle \mathbf{a}_1, \dots, \mathbf{a}_8 \rangle$ L = jagged line C(S) = dots below LN(S) = green and dia-mond dots below L

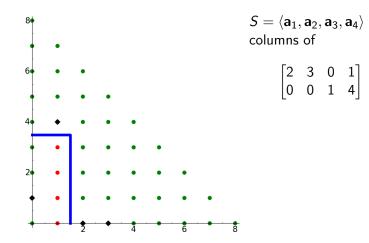
Example

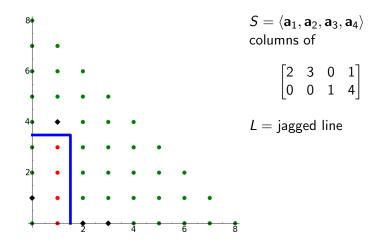


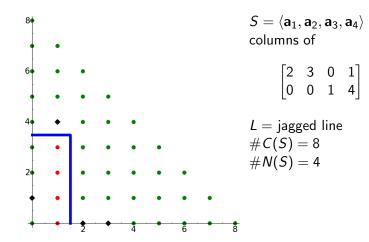
Example

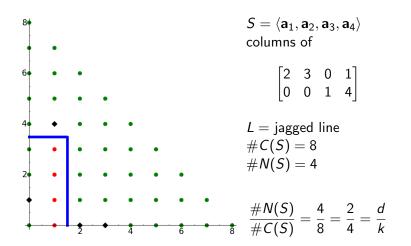












Proven cases of Generalized Wilf Conjecture

[Cisto,-,Failla,Flores,Peterson,Utano '19]

If $S \subset \mathbb{N}^d$ is a GNS, the Generalized Wilf Conjecture is true if

Proven cases of Generalized Wilf Conjecture

[Cisto,-,Failla,Flores,Peterson,Utano '19]

- If $S \subset \mathbb{N}^d$ is a GNS, the Generalized Wilf Conjecture is true if
 - **O** *S* is irreducible

Proven cases of Generalized Wilf Conjecture

[Cisto,-,Failla,Flores,Peterson,Utano '19]

- If $S \subset \mathbb{N}^d$ is a GNS, the Generalized Wilf Conjecture is true if
 - S is irreducible

2 S satisfies
$$\#N(S) = 1$$
.

Proven cases of Generalized Wilf Conjecture

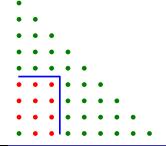
[Cisto,-,Failla,Flores,Peterson,Utano '19]

- If $S \subset \mathbb{N}^d$ is a GNS, the Generalized Wilf Conjecture is true if
 - *S* is irreducible
 - 2 S satisfies #N(S) = 1.
 - $S \subset \mathbb{N}^2$ and $g \leq 13$ (computer computation).

Proven cases of Generalized Wilf Conjecture

[Cisto,-,Failla,Flores,Peterson,Utano '19]

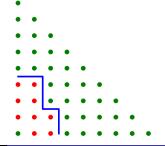
- If $S \subset \mathbb{N}^d$ is a GNS, the Generalized Wilf Conjecture is true if
 - S is irreducible
 - 2 S satisfies #N(S) = 1.
 - $S \subset \mathbb{N}^2$ and $g \leq 13$ (computer computation).



Proven cases of Generalized Wilf Conjecture

[Cisto,-,Failla,Flores,Peterson,Utano '19]

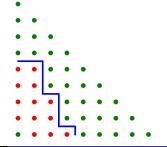
- If $S \subset \mathbb{N}^d$ is a GNS, the Generalized Wilf Conjecture is true if
 - S is irreducible
 - 2 S satisfies #N(S) = 1.
 - $S \subset \mathbb{N}^2$ and $g \leq 13$ (computer computation).



Proven cases of Generalized Wilf Conjecture

[Cisto,-,Failla,Flores,Peterson,Utano '19]

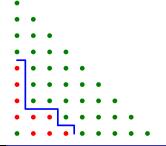
- If $S \subset \mathbb{N}^d$ is a GNS, the Generalized Wilf Conjecture is true if
 - S is irreducible
 - 2 S satisfies #N(S) = 1.
 - $S \subset \mathbb{N}^2$ and $g \leq 13$ (computer computation).



Proven cases of Generalized Wilf Conjecture

[Cisto,-,Failla,Flores,Peterson,Utano '19]

- If $S \subset \mathbb{N}^d$ is a GNS, the Generalized Wilf Conjecture is true if
 - S is irreducible
 - 2 S satisfies #N(S) = 1.
 - $S \subset \mathbb{N}^2$ and $g \leq 13$ (computer computation).



Affine semigroups

Affine semigroup

If A is a $d \times k$ matrix with integral entries, then $\{A\mathbf{x} : \mathbf{x} \in \mathbb{N}^k\}$ is an *affine semigroup*.

Affine semigroups

Affine semigroup

If A is a $d \times k$ matrix with integral entries, then $\{A\mathbf{x} : \mathbf{x} \in \mathbb{N}^k\}$ is an *affine semigroup*.

Holes of affine semigroups

If $S = \{A\mathbf{x} : \mathbf{x} \in \mathbb{N}^k\} \subset \mathbb{N}^d$, the *holes* of S are vectors $\mathbf{v} \in \mathbb{N}^d$ so that $k\mathbf{v} \in S$ for some $k \in \mathbb{N}$.

Affine semigroups

Affine semigroup

If A is a $d \times k$ matrix with integral entries, then $\{A\mathbf{x} : \mathbf{x} \in \mathbb{N}^k\}$ is an *affine semigroup*.

Holes of affine semigroups

If $S = \{A\mathbf{x} : \mathbf{x} \in \mathbb{N}^k\} \subset \mathbb{N}^d$, the *holes* of S are vectors $\mathbf{v} \in \mathbb{N}^d$ so that $k\mathbf{v} \in S$ for some $k \in \mathbb{N}$.

• An affine semigroup with finitely many holes naturally generalizes a GNS.

Affine semigroups

Affine semigroup

If A is a $d \times k$ matrix with integral entries, then $\{A\mathbf{x} : \mathbf{x} \in \mathbb{N}^k\}$ is an *affine semigroup*.

Holes of affine semigroups

If $S = \{A\mathbf{x} : \mathbf{x} \in \mathbb{N}^k\} \subset \mathbb{N}^d$, the *holes* of S are vectors $\mathbf{v} \in \mathbb{N}^d$ so that $k\mathbf{v} \in S$ for some $k \in \mathbb{N}$.

- An affine semigroup with finitely many holes naturally generalizes a GNS.
- These are called *C*-semigroups in [García-García, Marín-Aragón, Vigneron-Tenorio '16]

Affine semigroups

Affine semigroup

If A is a $d \times k$ matrix with integral entries, then $\{A\mathbf{x} : \mathbf{x} \in \mathbb{N}^k\}$ is an *affine semigroup*.

Holes of affine semigroups

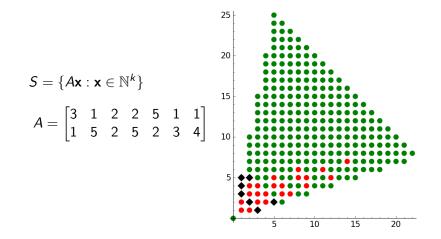
If $S = \{A\mathbf{x} : \mathbf{x} \in \mathbb{N}^k\} \subset \mathbb{N}^d$, the *holes* of S are vectors $\mathbf{v} \in \mathbb{N}^d$ so that $k\mathbf{v} \in S$ for some $k \in \mathbb{N}$.

- An affine semigroup with finitely many holes naturally generalizes a GNS.
- These are called *C*-semigroups in [García-García, Marín-Aragón, Vigneron-Tenorio '16]
- Another extension of Wilf's conjecture is given which depends on a monomial order and does not incorporate dimension

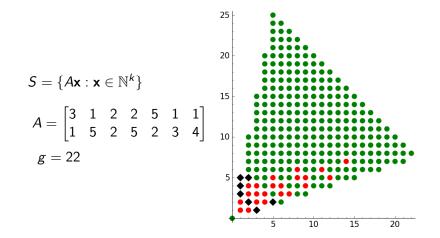
An affine semigroup and its holes

$$S = \{A\mathbf{x} : \mathbf{x} \in \mathbb{N}^k\}$$
$$A = \begin{bmatrix} 3 & 1 & 2 & 2 & 5 & 1 & 1\\ 1 & 5 & 2 & 5 & 2 & 3 & 4 \end{bmatrix}$$

An affine semigroup and its holes



An affine semigroup and its holes



Concluding questions

 Frobenius numbers for affine semigroups – still widely open [Aliev, De Loera, Louveaux '16]

Concluding questions

- Frobenius numbers for affine semigroups still widely open [Aliev, De Loera, Louveaux '16]
- Is there a version of Wilf's conjecture for arbitrary affine semigroups (with infinitely many holes)?

Concluding questions

- Frobenius numbers for affine semigroups still widely open [Aliev, De Loera, Louveaux '16]
- Is there a version of Wilf's conjecture for arbitrary affine semigroups (with infinitely many holes)?
- Six a pointed cone C. Let N_{C,g} be the number of affine semigroups with g holes and conical hull C. What is the rate of growth of N_{C,g} with respect to g? (first addressed for C = N^d in [Failla, Peterson, and Utano '16])