Commutative Algebra and Approximation Theory

Michael DiPasquale

University of Nebraska-Lincoln
Colloquium

Comm. Alg.
and Approx. Theory
Michael DiPasquale

Background and Central Questions

Using
commutative algebra

Planar
Dimension
Formulas
Freeness
Open
Questions

Part I: Background and Central Questions

Piecewise Polynomials

```
Comm. Alg.
and Approx.
    Theory
    Michael
DiPasquale
```

Background
and Central
Questions
Using
commutative
algebra
Planar
Dimension
Formulas
Freeness
Open
Questions

Spline

A piecewise polynomial function, continuously differentiable to some order.

Piecewise Polynomials

```
Comm. Alg.
and Approx.
    Theory
    Michael
DiPasquale
```

Background
and Central
Questions
Using
commutative
algebra
Planar
Dimension
Formulas
Freeness
Open
Questions

Spline

A piecewise polynomial function, continuously differentiable to some order.

Low degree splines are used in Calc 1 to approximate integrals.

Piecewise Polynomials

```
Comm. Alg
and Approx
    Theory
    Michael
DiPasquale
```

Background and Central Questions

Using commutative algebra

Planar Dimension Formulas

Freeness
Open
Questions

Spline

A piecewise polynomial function, continuously differentiable to some order.

Low degree splines are used in Calc 1 to approximate integrals.

Graph of a function

Piecewise Polynomials

Using

Spline

A piecewise polynomial function, continuously differentiable to some order.

Low degree splines are used in Calc 1 to approximate integrals.

Trapezoid Rule

Piecewise Polynomials

Using
commutative algebra

Planar Dimension Formulas

Freeness
Open
Questions

Spline

A piecewise polynomial function, continuously differentiable to some order.

Low degree splines are used in Calc 1 to approximate integrals.

Simpson's Rule

Univariate Splines

```
Comm. Alg.
and Approx.
    Theory
    Michael
DiPasquale
```

Background and Central Questions

Using
commutative
algebra
Planar
Dimension
Formulas
Freeness
Open
Questions

Most widely studied case: approximation of a function $f(x)$ over an interval $\Delta=[a, b] \subset \mathbb{R}$ by C^{r} piecewise polynomials.

Univariate Splines

Most widely studied case: approximation of a function $f(x)$ over an interval $\Delta=[a, b] \subset \mathbb{R}$ by C^{r} piecewise polynomials.

- Subdivide $\Delta=[a, b]$ into subintervals:
$\Delta=\left[a_{0}, a_{1}\right] \cup\left[a_{1}, a_{2}\right] \cup \cdots \cup\left[a_{n-1}, a_{n}\right]$
- Find a basis for the vector space $C_{d}^{r}(\Delta)$ of C^{r} piecewise polynomial functions on Δ with degree at most d (e.g. B-splines)
- Find best approximation to $f(x)$ in $C_{d}^{r}(\Delta)$

Two Subintervals

Comm. Alg.
and Approx. Theory

Michael DiPasquale

Background and Central Questions

Using
commutative algebra
Planar
Dimension
Formulas
Freeness
Open
Questions
$\Delta=\left[a_{0}, a_{1}\right] \cup\left[a_{1}, a_{2}\right]$ (assume WLOG $a_{1}=0$)
$\left(f_{1}, f_{2}\right) \in C_{d}^{r}(\Delta) \Longleftrightarrow f_{1}^{(i)}(0)=f_{2}^{(i)}(0)$ for $0 \leq i \leq r$
$\Longleftrightarrow \quad x^{r+1} \mid\left(f_{2}-f_{1}\right)$
$\Longleftrightarrow \quad\left(f_{2}-f_{1}\right) \in\left\langle x^{r+1}\right\rangle$

Two Subintervals

Comm. Alg.
and Approx.
Theory
Michael
DiPasquale

Background and Central Questions

Using
commutative
algebra
Planar
Dimension
Formulas
Freeness
Open
Questions
$\Delta=\left[a_{0}, a_{1}\right] \cup\left[a_{1}, a_{2}\right]$ (assume WLOG $a_{1}=0$)

$$
\begin{aligned}
\left(f_{1}, f_{2}\right) \in C_{d}^{r}(\Delta) & \Longleftrightarrow f_{1}^{(i)}(0)=f_{2}^{(i)}(0) \text { for } 0 \leq i \leq r \\
& \Longleftrightarrow x^{r+1} \mid\left(f_{2}-f_{1}\right) \\
& \Longleftrightarrow\left(f_{2}-f_{1}\right) \in\left\langle x^{r+1}\right\rangle
\end{aligned}
$$

Even more explicitly:

- $f_{1}(x)=b_{0}+b_{1} x+\cdots+b_{d} x^{d}$
- $f_{2}(x)=c_{0}+c_{1} x+\cdots+c_{d} x^{d}$
- $\left(f_{0}, f_{1}\right) \in C_{d}^{r}(\Delta) \Longleftrightarrow b_{0}=c_{0}, \ldots, b_{r}=c_{r}$.

Two Subintervals

Comm. Alg
and Approx.
Theory
Michael
DiPasquale

Background and Central Questions

Using
commutative
algebra
Planar
Dimension
Formulas
Freeness
Open
Questions
$\Delta=\left[a_{0}, a_{1}\right] \cup\left[a_{1}, a_{2}\right]$ (assume WLOG $a_{1}=0$)

$$
\begin{aligned}
\left(f_{1}, f_{2}\right) \in C_{d}^{r}(\Delta) & \Longleftrightarrow f_{1}^{(i)}(0)=f_{2}^{(i)}(0) \text { for } 0 \leq i \leq r \\
& \Longleftrightarrow x^{r+1} \mid\left(f_{2}-f_{1}\right) \\
& \Longleftrightarrow\left(f_{2}-f_{1}\right) \in\left\langle x^{r+1}\right\rangle
\end{aligned}
$$

Even more explicitly:

- $f_{1}(x)=b_{0}+b_{1} x+\cdots+b_{d} x^{d}$
- $f_{2}(x)=c_{0}+c_{1} x+\cdots+c_{d} x^{d}$
- $\left(f_{0}, f_{1}\right) \in C_{d}^{r}(\Delta) \Longleftrightarrow b_{0}=c_{0}, \ldots, b_{r}=c_{r}$.

$$
\operatorname{dim} C_{d}^{r}(\Delta)= \begin{cases}d+1 & \text { if } d \leq r \\ (d+1)+(d-r) & \text { if } d>r\end{cases}
$$

Note: $\operatorname{dim} C_{d}^{r}(\Delta)$ is polynomial in d for $d>r$.

Higher Dimensions

Comm. Alg.
and Approx. Theory

Let $\Delta \subset \mathbb{R}^{n}$ be

Michael
DiPasquale

Background and Central Questions

Using
commutative algebra

Planar
Dimension
Formulas
Freeness
Open
Questions

Higher Dimensions

Comm. Alg.
and Approx.
Theory
Michael
DiPasquale

Background and Central Questions

Using
commutative algebra

Planar
Dimension
Formulas
Freeness
Open
Questions

$$
\text { Let } \Delta \subset \mathbb{R}^{n} \text { be }
$$

- a polytopal complex
- pure n-dimensional
- a pseudomanifold

Higher Dimensions

Comm. Alg
and Approx.
Theory
Michael
DiPasquale

Background and Central Questions

Using
commutative
algebra
Planar
Dimension
Formulas
Freeness
Open
Questions

Let $\Delta \subset \mathbb{R}^{n}$ be

- a polytopal complex
- pure n-dimensional
- a pseudomanifold

A polytopal complex \mathcal{Q}

Higher Dimensions

Comm. Alg
and Approx
Theory
Michael DiPasquale

Background and Central Questions

Using
commutative algebra

Planar Dimension Formulas

Freeness

Let $\Delta \subset \mathbb{R}^{n}$ be

- a polytopal complex
- pure n-dimensional
- a pseudomanifold

A polytopal complex \mathcal{Q}
(Algebraic) Spline Criterion:

- If $\tau \in \Delta_{n-1}, I_{\tau}=$ affine form vanishing on affine span of τ
- Collection $\left\{F_{\sigma}\right\}_{\sigma \in \Delta_{n}}$ glue to $F \in C^{r}(\Delta) \Longleftrightarrow$ for every pair of adjacent facets $\sigma_{1}, \sigma_{2} \in \Delta_{n}$ with $\sigma_{1} \cap \sigma_{2}=\tau \in \Delta_{n-1}, I_{\tau}^{r+1} \mid\left(F_{\sigma_{1}}-F_{\sigma_{2}}\right)$

The dimension question

Comm. Alg.
 and Approx Theory
 Michael DiPasquale

Background and Central Questions

Using commutative algebra

Planar Dimension
Formulas
Freeness
Open Questions

Key Fact: $C_{d}^{r}(\Delta)$ is a finite dimensional real vector space.

The dimension question

Comm. Alg.
and Approx.
Theory
Michael
DiPasquale

Background and Central Questions

Using
commutative
algebra
Planar
Dimension
Formulas
Freeness
Open
Questions

Key Fact: $C_{d}^{r}(\Delta)$ is a finite dimensional real vector space.

A basis for $C_{1}^{0}(\mathcal{Q})$
is shown at right.

The dimension question

Comm. Alg.
and Approx.
Theory
Michael
DiPasquale

Background and Central Questions

Using
commutative
algebra
Planar
Dimension
Formulas
Freeness

Open

Questions

Key Fact: $C_{d}^{r}(\Delta)$ is a finite dimensional real vector space.

A basis for $C_{1}^{0}(\mathcal{Q})$ is shown at right.

$$
\operatorname{dim}_{\mathbb{R}} C_{1}^{0}(\mathcal{Q})=4
$$

The dimension question

Comm. Alg.
and Approx.
Theory
Michael
DiPasquale

Background and Central Questions

Using
commutative
algebra
Planar
Dimension
Formulas
Freeness
Open
Questions

Key Fact: $C_{d}^{r}(\Delta)$ is a finite dimensional real vector space.

A basis for $C_{1}^{0}(\mathcal{Q})$ is shown at right.

$$
\operatorname{dim}_{\mathbb{R}} C_{1}^{0}(\mathcal{Q})=4
$$

Two central problems in approximation theory:
(1) Determine $\operatorname{dim} C_{d}^{r}(\Delta)$
(2) Construct a 'local' basis of $C_{d}^{r}(\Delta)$, if possible

Who Cares?

(1) Computation of $\operatorname{dim} C_{d}^{r}(\Delta)$ for higher dimensions initiated by [Strang '75] in connection with finite element method
(2) Data fitting in approximation theory
(3) Computer Aided Geometric Design (CAGD) - building surfaces by splines [Farin '97]
(4) Toric Geometry: Equivariant Chow cohomology rings of toric varieties are rings of continuous splines on the fan (under appropriate conditions) [Payne '06], more generally GKM theory

Comm. Alg.
and Approx. Theory

Michael
DiPasquale

Background
and Central
Questions
Using
commutative algebra

Planar
Dimension
Formulas
Freeness
Open
Questions

Part II: How is commutative algebra useful?

Continuous Splines in Two Dimensions

Continuous Splines in Two Dimensions

Comm. Alg. and Approx. Theory

Michael

DiPasquale

Background
and Central

Questions

Using
commutative algebra

Planar
Dimension
Formulas
Freeness
Open
Questions

Continuous Splines in Two Dimensions

```
Comm. Alg.
and Approx.
    Theory
    Michael
    DiPasquale
Background
and Central
Questions
Using
commutative
algebra
Planar
Dimension
Formulas
Freeness
Open
Questions
```


$\left(F_{1}, F_{2}, F_{3}\right) \in C^{0}(\Delta) \Longleftrightarrow$ $\exists f_{1}, f_{2}, f_{3}$ so that

$$
\begin{aligned}
& F_{1}-F_{2}=f_{1} x \\
& F_{2}-F_{3}=f_{2}(x-y) \\
& F_{3}-F_{1}=f_{3} y
\end{aligned}
$$

Freeness

Comm. Alg.
and Approx.

Using
commutative algebra

Planar
Dimension
Formulas
Freeness
Open
Questions
Three splines in $C^{0}(\Delta)$:

Freeness

Comm. Alg
and Approx.
Theory
Michael
DiPasquale

Background
and Central
Questions
Using
commutative algebra

Planar
Dimension
Formulas
Freeness

Three splines in $C^{0}(\Delta)$:

Freeness

Comm. Alg
and Approx.
Theory
Michael
DiPasquale

Background
and Central
Questions
Using
commutative algebra

Planar
Dimension
Formulas
Freeness
Open
Questions

Three splines in $C^{0}(\Delta)$:

- In fact, every spline $F \in C^{0}(\Delta)$ can be written uniquely as a polynomial combination of these three splines.

Freeness

Comm. Alg.
and Approx
Theory
Michael
DiPasquale

Background
and Central
Questions
Using
commutative algebra

Planar Dimension Formulas

Three splines in $C^{0}(\Delta)$:

- In fact, every spline $F \in C^{0}(\Delta)$ can be written uniquely as a polynomial combination of these three splines.
- We say $C^{0}(\Delta)$ is a free $\mathbb{R}[x, y]$-module, generated in degrees $0,1,2$

Freeness and Dimension Computation

Comm. Alg.
and Approx.
Theory
Michael
DiPasquale

$C^{0}(\Delta)$ is a free $\mathbb{R}[x, y]$-module generated in degrees $0,1,2$.

Using

Freeness and Dimension Computation

Comm. Alg.

and Approx.
Theory
Michael
DiPasquale

Background
and Central
Questions
Using
commutative algebra

Planar
Dimension
Formulas
Freeness

Open

Questions
$C^{0}(\Delta)$ is a free $\mathbb{R}[x, y]$-module generated in degrees $0,1,2$.

- $C_{d}^{0}(\Delta) \cong \mathbb{R}[x, y]_{\leq d}(1,1,1) \oplus \mathbb{R}[x, y]_{\leq d-1}(0, x, y) \oplus$ $\mathbb{R}[x, y]_{\leq d-2}\left(0, x^{2}, y^{2}\right)$.
- $\operatorname{dim} C_{d}^{0}(\Delta)=\binom{d+2}{2}+\binom{d+1}{2}+\binom{d}{2}$
$=\frac{3}{2} d^{2}+\frac{3}{2} d+1$ for $d \geq 1$

Freeness and Dimension Computation

Using
$C^{0}(\Delta)$ is a free $\mathbb{R}[x, y]$-module generated in degrees $0,1,2$.

- $C_{d}^{0}(\Delta) \cong \mathbb{R}[x, y]_{\leq d}(1,1,1) \oplus \mathbb{R}[x, y]_{\leq d-1}(0, x, y) \oplus$ $\mathbb{R}[x, y]_{\leq d-2}\left(0, x^{2}, y^{2}\right)$.
- $\operatorname{dim} C_{d}^{0}(\Delta)=\binom{d+2}{2}+\binom{d+1}{2}+\binom{d}{2}$
$=\frac{3}{2} d^{2}+\frac{3}{2} d+1$ for $d \geq 1$
In general, employ a coning construction $\Delta \rightarrow \widehat{\Delta}$ to homogenize and consider $\operatorname{dim} C^{r}(\widehat{\Delta})_{d}$.

Coning Construction

Comm. Alg.
and Approx Theory

Michael
DiPasquale

Background
and Central
Questions
Using
commutative algebra

Planar
Dimension
Formulas
Freeness
Open
Questions

- $\widehat{\Delta} \subset \mathbb{R}^{n+1}$ denotes the cone over $\Delta \subset \mathbb{R}^{n}$.

Δ

$\widehat{\Delta}$

Coning Construction

Comm. Alg
and Approx.
Theory
Michael
DiPasquale

Background
and Central
Questions
Using
commutative algebra

Planar
Dimension
Formulas
Freeness

- $\widehat{\Delta} \subset \mathbb{R}^{n+1}$ denotes the cone over $\Delta \subset \mathbb{R}^{n}$.

Δ

$\widehat{\Delta}$
- $C^{r}(\widehat{\Delta})$ is always a graded module over $\mathbb{R}\left[x_{0}, \ldots, x_{n}\right]$
- $C_{d}^{r}(\Delta) \cong C^{r}(\widehat{\Delta})_{d}$ [Billera-Rose '91]

Hilbert series and polynomial

Comm. Alg.
and Approx
Theory
Michael DiPasquale

Background
and Central Questions

Using commutative algebra

Planar
Dimension
Formulas
Freeness
Open Questions

From commutative algebra

- $\operatorname{dim} C_{d}^{r}(\Delta)=\operatorname{dim} C^{r}(\widehat{\Delta})_{d}$ is called the Hilbert function of $C^{r}(\widehat{\Delta})$; it is a polynomial in d for $d \gg 0$
- This is called the Hilbert polynomial of $C^{r}(\widehat{\Delta})$, denoted $H P\left(C^{r}(\widehat{\Delta}), d\right)$

Hilbert series and polynomial

Comm. Alg
and Approx.
Theory
Michael
DiPasquale

Background
and Central Questions

Using
commutative algebra

Planar
Dimension
Formulas
Freeness
From commutative algebra

- $\operatorname{dim} C_{d}^{r}(\Delta)=\operatorname{dim} C^{r}(\widehat{\Delta})_{d}$ is called the Hilbert function of $C^{r}(\widehat{\Delta})$; it is a polynomial in d for $d \gg 0$
- This is called the Hilbert polynomial of $C^{r}(\widehat{\Delta})$, denoted $H P\left(C^{r}(\widehat{\Delta}), d\right)$
- The Hilbert series is the formal sum $H S\left(C^{r}(\widehat{\Delta}), t\right)=\sum_{d=0}^{\infty} \operatorname{dim} C_{d}^{r}(\Delta) t^{d}$; it has the form

$$
H S\left(C^{r}(\widehat{\Delta}), t\right)=\frac{h(t)}{(1-t)^{d+1}}, \text { where } h(t) \in \mathbb{Z}[t]
$$

Hilbert series and polynomial

Comm. Alg.
and Approx.
Theory
Michael
DiPasquale

Background
and Central Questions

Using
commutative algebra

Planar
Dimension
Formulas
Freeness

From commutative algebra

- $\operatorname{dim} C_{d}^{r}(\Delta)=\operatorname{dim} C^{r}(\widehat{\Delta})_{d}$ is called the Hilbert function of $C^{r}(\widehat{\Delta})$; it is a polynomial in d for $d \gg 0$
- This is called the Hilbert polynomial of $C^{r}(\widehat{\Delta})$, denoted $H P\left(C^{r}(\widehat{\Delta}), d\right)$
- The Hilbert series is the formal sum $H S\left(C^{r}(\widehat{\Delta}), t\right)=\sum_{d=0}^{\infty} \operatorname{dim} C_{d}^{r}(\Delta) t^{d}$; it has the form

$$
H S\left(C^{r}(\widehat{\Delta}), t\right)=\frac{h(t)}{(1-t)^{d+1}}, \text { where } h(t) \in \mathbb{Z}[t]
$$

Main questions:

- Determine $H S\left(C^{r}(\widehat{\Delta}), t\right)$. (too hard!)

Hilbert series and polynomial

Comm. Alg.
and Approx.
Theory
Michael
DiPasquale

Background
and Central Questions

Using
commutative algebra

Planar
Dimension
Formulas
Freeness

From commutative algebra

- $\operatorname{dim} C_{d}^{r}(\Delta)=\operatorname{dim} C^{r}(\widehat{\Delta})_{d}$ is called the Hilbert function of $C^{r}(\widehat{\Delta})$; it is a polynomial in d for $d \gg 0$
- This is called the Hilbert polynomial of $C^{r}(\widehat{\Delta})$, denoted $H P\left(C^{r}(\widehat{\Delta}), d\right)$
- The Hilbert series is the formal sum $H S\left(C^{r}(\widehat{\Delta}), t\right)=\sum_{d=0}^{\infty} \operatorname{dim} C_{d}^{r}(\Delta) t^{d}$; it has the form

$$
H S\left(C^{r}(\widehat{\Delta}), t\right)=\frac{h(t)}{(1-t)^{d+1}}, \text { where } h(t) \in \mathbb{Z}[t]
$$

Main questions:

- Determine $H S\left(C^{r}(\widehat{\Delta}), t\right)$. (too hard!)
- What is a formula for $\operatorname{HP}\left(C^{r}(\widehat{\Delta}), d\right)$?

Hilbert series and polynomial

From commutative algebra

- $\operatorname{dim} C_{d}^{r}(\Delta)=\operatorname{dim} C^{r}(\widehat{\Delta})_{d}$ is called the Hilbert function of $C^{r}(\widehat{\Delta})$; it is a polynomial in d for $d \gg 0$
- This is called the Hilbert polynomial of $C^{r}(\widehat{\Delta})$, denoted $H P\left(C^{r}(\widehat{\Delta}), d\right)$
- The Hilbert series is the formal sum $H S\left(C^{r}(\widehat{\Delta}), t\right)=\sum_{d=0}^{\infty} \operatorname{dim} C_{d}^{r}(\Delta) t^{d}$; it has the form

$$
H S\left(C^{r}(\widehat{\Delta}), t\right)=\frac{h(t)}{(1-t)^{d+1}}, \text { where } h(t) \in \mathbb{Z}[t]
$$

Main questions:

- Determine $\operatorname{HS}\left(C^{r}(\widehat{\Delta}), t\right)$. (too hard!)
- What is a formula for $\operatorname{HP}\left(C^{r}(\widehat{\Delta}), d\right)$?
- How large must d be so that $\operatorname{dim} C_{d}^{r}(\Delta)=H P\left(C^{r}(\widehat{\Delta}), d\right)$?

```
Comm. Alg.
and Approx.
    Theory
    Michael
    DiPasquale
Background
and Central
Questions
Using
commutative
algebra
Planar
Dimension
Formulas
Freeness
Open
Questions
```


Part III: The planar dimension formulas

Planar simplicial splines of large degree

Planar simplicial dimension [Alfeld-Schumaker '90]

If $\Delta \subset \mathbb{R}^{2}$ is a simply connected triangulation and $d \geq 3 r+1$,

$$
\operatorname{dim} C_{d}^{r}(\Delta)=f_{2}\binom{d+2}{2}-f_{1}^{0}\left(\binom{d+2}{2}-\binom{d-r+1}{2}\right)+\sigma
$$

- $f_{i}\left(f_{i}^{0}\right)$ is the number of i-faces (interior i-faces).
- $\sigma=$ constant obtained as a sum of contributions from each interior vertex.

Planar non-simplicial splines of large degree

Planar non-simplicial dimension [McDonald-Schenck '09]

If $\Delta \subset \mathbb{R}^{2}$ is a simply connected polytopal complex and $d \gg 0$,

$$
\begin{aligned}
\operatorname{dim} C_{d}^{r}(\Delta)= & f_{2}\binom{d+2}{2}-f_{1}^{0}\left(\binom{d+2}{2}-\binom{d-r+1}{2}\right) \\
& +\sigma+\sigma^{\prime}
\end{aligned}
$$

- $f_{i}\left(f_{i}^{0}\right)$ is the number of i-faces (interior i-faces).
- $\sigma=$ sum of constant contributions from interior vertices
- $\sigma^{\prime}=$ sum of constant contributions from 'missing' vertices

Dimension computation via homology

Comm. Alg.
and Approx.
Theory
Michael
DiPasquale

Background
and Central Questions

Using
commutative
algebra
Planar
Dimension
Formulas
Freeness
Open
Questions

Use Billera-Schenck-Stillman chain complex to derive Hilbert polynomial:

Dimension computation via homology

Comm. Alg.
and Approx.
Theory
Michael DiPasquale

Background and Central Questions

Using commutative algebra

Planar
Dimension Formulas

Freeness
Open Questions

Use Billera-Schenck-Stillman chain complex to derive Hilbert polynomial:

$$
\mathcal{R} / \mathcal{J}: \quad 0 \longrightarrow \bigoplus_{\sigma \in \Delta_{2}} S \xrightarrow{\partial_{2}} \underset{\tau \in \Delta_{1}^{0}}{\bigoplus} \frac{S}{J(\tau)} \xrightarrow{\partial_{1}} \underset{v \in \Delta_{0}^{0}}{\bigoplus} \frac{S}{J(v)} \longrightarrow 0
$$

Dimension computation via homology

Comm. Alg
and Approx.
Theory
Michael DiPasquale

Background and Central Questions

Using
commutative algebra

Planar
Dimension Formulas

Freeness
Open Questions

Use Billera-Schenck-Stillman chain complex to derive Hilbert polynomial:

$$
\begin{gathered}
\mathcal{R} / \mathcal{J}: 0 \longrightarrow \underset{\sigma \in \Delta_{2}}{\bigoplus} S \xrightarrow{\partial_{2}} \underset{\tau \in \Delta_{1}^{0}}{\bigoplus} \frac{S}{J(\tau)} \xrightarrow{\partial_{1}} \underset{v \in \Delta_{0}^{0}}{\bigoplus} \frac{S}{J(v)} \longrightarrow 0, \\
J(\tau)=\left\langle\ell_{\tau}^{r+1}\right\rangle \quad J(v)=\sum_{v \in \tau} J(\tau)
\end{gathered}
$$

$\partial_{2}, \partial_{1}$: cellular differentials of Δ relative to boundary

Dimension computation via homology

Comm. Alg.
and Approx.
Theory
Michael DiPasquale

Background and Central Questions

Using
commutative algebra

Planar
Dimension Formulas

Freeness
Open Questions

Use Billera-Schenck-Stillman chain complex to derive Hilbert polynomial:

$$
\begin{gathered}
\mathcal{R} / \mathcal{J}: 0 \longrightarrow \bigoplus_{\sigma \in \Delta_{2}} S \xrightarrow{\partial_{2}} \underset{\tau \in \Delta_{1}^{0}}{\bigoplus} \frac{S}{J(\tau)} \xrightarrow{\partial_{1}} \underset{v \in \Delta_{0}^{0}}{\bigoplus} \frac{S}{J(v)} \longrightarrow 0, \\
J(\tau)=\left\langle\ell_{\tau}^{r+1}\right\rangle \quad J(v)=\sum_{v \in \tau} J(\tau)
\end{gathered}
$$

$\partial_{2}, \partial_{1}$: cellular differentials of Δ relative to boundary

- $\operatorname{ker}\left(\partial_{2}\right)=C^{r}(\Delta)$

Dimension computation via homology

Comm. Alg
and Approx.
Theory
Michael DiPasquale

Background and Central Questions

Using
commutative
algebra
Planar
Dimension Formulas

Freeness

Use Billera-Schenck-Stillman chain complex to derive Hilbert polynomial:

$$
\begin{gathered}
\mathcal{R} / \mathcal{J}: 0 \longrightarrow \underset{\sigma \in \Delta_{2}}{\bigoplus} S \xrightarrow{\partial_{2}} \underset{\tau \in \Delta_{1}^{0}}{\bigoplus} \frac{S}{J(\tau)} \xrightarrow{\partial_{1}} \underset{v \in \Delta_{0}^{0}}{\bigoplus} \frac{S}{J(v)} \longrightarrow 0, \\
J(\tau)=\left\langle\ell_{\tau}^{r+1}\right\rangle \quad J(v)=\sum_{v \in \tau} J(\tau)
\end{gathered}
$$

$\partial_{2}, \partial_{1}$: cellular differentials of Δ relative to boundary

- $\operatorname{ker}\left(\partial_{2}\right)=C^{r}(\Delta)$
- Via coning/homogenizing, all modules can be made graded

Dimension computation via homology

Comm. Alg.
and Approx.
Theory
Michael DiPasquale

Background and Central Questions

Using
commutative algebra

Planar
Dimension Formulas

Freeness

Use Billera-Schenck-Stillman chain complex to derive Hilbert polynomial:

$$
\begin{gathered}
\mathcal{R} / \mathcal{J}: \quad 0 \longrightarrow \underset{\sigma \in \Delta_{2}}{\oplus} S \xrightarrow{\partial_{2}} \underset{\tau \in \Delta_{1}^{0}}{\oplus} \frac{S}{J(\tau)} \xrightarrow{\partial_{1}} \underset{v \in \Delta_{0}^{0}}{\oplus} \frac{S}{J(v)} \longrightarrow 0, \\
J(\tau)=\left\langle\ell_{\tau}^{r+1}\right\rangle \quad J(v)=\sum_{v \in \tau} J(\tau)
\end{gathered}
$$

$\partial_{2}, \partial_{1}$: cellular differentials of Δ relative to boundary

- $\operatorname{ker}\left(\partial_{2}\right)=C^{r}(\Delta)$
- Via coning/homogenizing, all modules can be made graded
- Euler characteristic:

$$
\begin{aligned}
& \operatorname{dim} C_{d}^{r}(\Delta)=\left|\Delta_{2}\right| \cdot \operatorname{dim} S_{d}-\sum_{\tau \in \Delta_{1}^{\circ}} \operatorname{dim}\left(\frac{S}{J(\tau)}\right)_{d}+ \\
& \sum_{v \in \Delta_{0}^{\circ}} \operatorname{dim}\left(\frac{S}{J(v)}\right)_{d}+\operatorname{dim} H_{1}(\mathcal{R} / \mathcal{J})_{d}-\operatorname{dim} H_{2}(\mathcal{R} / \mathcal{J})_{d}
\end{aligned}
$$

Dimension computation via homology, continued

Comm. Alg.
and Approx.
Theory
Michael DiPasquale

Background and Central Questions

Using
commutative algebra

Planar
Dimension
Formulas
Freeness
Open
Questions
$\operatorname{dim} C_{d}^{r}(\Delta)=\left|\Delta_{2}\right| \cdot \operatorname{dim} S_{d}-\sum_{\tau \in \Delta_{1}^{\circ}} \operatorname{dim}\left(\frac{S}{J(\tau)}\right)_{d}+$
$\sum_{v \in \Delta_{0}^{\circ}} \operatorname{dim}\left(\frac{S}{J(v)}\right)_{d}+\operatorname{dim} H_{1}(\mathcal{R} / \mathcal{J})_{d}-\operatorname{dim} H_{2}(\mathcal{R} / \mathcal{J})_{d}$

Dimension computation via homology, continued

Comm. Alg.
and Approx.
Theory
Michael
DiPasquale

$$
\begin{aligned}
& \operatorname{dim} C_{d}^{r}(\Delta)=\left|\Delta_{2}\right| \cdot \operatorname{dim} S_{d}-\sum_{\tau \in \Delta_{1}^{\circ}} \operatorname{dim}\left(\frac{S}{J(\tau)}\right)_{d}+ \\
& \sum_{v \in \Delta_{0}^{\circ}} \operatorname{dim}\left(\frac{S}{J(v)}\right)_{d}+\operatorname{dim} H_{1}(\mathcal{R} / \mathcal{J})_{d}-\operatorname{dim} H_{2}(\mathcal{R} / \mathcal{J})_{d}
\end{aligned}
$$

- $\operatorname{dim}(S / J(v))_{d}$ computed by [Schumaker], [Stiller '83], [Schenck '97], ...

Dimension computation via homology, continued

Comm. Alg.
and Approx.
Theory
Michael
DiPasquale

$$
\begin{aligned}
& \operatorname{dim} C_{d}^{r}(\Delta)=\left|\Delta_{2}\right| \cdot \operatorname{dim} S_{d}-\sum_{\tau \in \Delta_{1}^{\circ}} \operatorname{dim}\left(\frac{S}{J(\tau)}\right)_{d}+ \\
& \sum_{v \in \Delta_{0}^{\circ}} \operatorname{dim}\left(\frac{S}{J(v)}\right)_{d}+\operatorname{dim} H_{1}(\mathcal{R} / \mathcal{J})_{d}-\operatorname{dim} H_{2}(\mathcal{R} / \mathcal{J})_{d}
\end{aligned}
$$

- $\operatorname{dim}(S / J(v))_{d}$ computed by [Schumaker], [Stiller '83], [Schenck ‘97], ...
- $H_{2}(\mathcal{R} / \mathcal{J})=0$

Dimension computation via homology, continued

Comm. Alg. and Approx.

Theory
Michael DiPasquale

Background and Central Questions

Using
commutative algebra

Planar
Dimension Formulas

Freeness
Open Questions
$\operatorname{dim} C_{d}^{r}(\Delta)=\left|\Delta_{2}\right| \cdot \operatorname{dim} S_{d}-\sum_{\tau \in \Delta_{1}^{\circ}} \operatorname{dim}\left(\frac{S}{J(\tau)}\right)_{d}+$
$\sum_{v \in \Delta_{0}^{\circ}} \operatorname{dim}\left(\frac{S}{J(v)}\right)_{d}+\operatorname{dim} H_{1}(\mathcal{R} / \mathcal{J})_{d}-\operatorname{dim} H_{2}(\mathcal{R} / \mathcal{J})_{d}$

- $\operatorname{dim}(S / J(v))_{d}$ computed by [Schumaker], [Stiller '83], [Schenck '97], ...
- $\mathrm{H}_{2}(\mathcal{R} / \mathcal{J})=0$
- $H P\left(H_{1}(\mathcal{R} / \mathcal{J}), d\right)$ determined via localization - either vanishes (simplicial, generic polytopal cases) or is constant [McDonald-Schenck '09]

Dimension computation via homology, continued

Comm. Alg. and Approx.

Theory
Michael DiPasquale
$\operatorname{dim} C_{d}^{r}(\Delta)=\left|\Delta_{2}\right| \cdot \operatorname{dim} S_{d}-\sum_{\tau \in \Delta_{1}^{\circ}} \operatorname{dim}\left(\frac{S}{J(\tau)}\right)_{d}+$
$\sum_{v \in \Delta_{0}^{\circ}} \operatorname{dim}\left(\frac{S}{J(v)}\right)_{d}+\operatorname{dim} H_{1}(\mathcal{R} / \mathcal{J})_{d}-\operatorname{dim} H_{2}(\mathcal{R} / \mathcal{J})_{d}$

- $\operatorname{dim}(S / J(v))_{d}$ computed by [Schumaker], [Stiller '83], [Schenck '97], ...
- $\mathrm{H}_{2}(\mathcal{R} / \mathcal{J})=0$
- $H P\left(H_{1}(\mathcal{R} / \mathcal{J}), d\right)$ determined via localization - either vanishes (simplicial, generic polytopal cases) or is constant [McDonald-Schenck '09]
Remark: For $\Delta \subset \mathbb{R}^{3}$, computing $\operatorname{dim}(S / J(v))_{d}$ for $v \in \Delta_{0}^{\circ}$ translates to computing dimension of fat point schemes in \mathbb{P}^{2} (much harder than planar setting - see for instance the Segre-Harbourne-Gimigliano-Hirschowitz (SHGH) Conjecture),

Agreement for non-simplicial splines

Comm. Alg
and Approx Theory

Michael
DiPasquale

Background and Central Questions

Using commutative algebra

Planar Dimension Formulas

Freeness
Open Questions

How large must d be in order for $\operatorname{HP}\left(C^{r}(\widehat{\Delta}), d\right)=\operatorname{dim} C_{d}^{r}(\Delta)$?

Michael DiPasquale

Background and Central Questions

Using
commutative algebra

Planar
Dimension Formulas

Freeness

How large must d be in order for $\operatorname{HP}\left(C^{r}(\widehat{\Delta}), d\right)=\operatorname{dim} C_{d}^{r}(\Delta)$?
Theorem: Using McDonald-Schenck Formula [D. '18]
$\Delta \subset \mathbb{R}^{2}$ a planar polytopal complex. Let $F=$ maximum number of edges appearing in a polytope of Δ. Then $\operatorname{dim} C_{d}^{r}(\Delta)=H P\left(C^{r}(\widehat{\Delta}), d\right)$ for $d \geq(2 F-1)(r+1)-1$.

Michael DiPasquale

Background and Central Questions

Using
commutative algebra

Planar
Dimension Formulas

Freeness
Open
Questions

How large must d be in order for $\operatorname{HP}\left(C^{r}(\widehat{\Delta}), d\right)=\operatorname{dim} C_{d}^{r}(\Delta)$?
Theorem: Using McDonald-Schenck Formula [D. '18]
$\Delta \subset \mathbb{R}^{2}$ a planar polytopal complex. Let $F=$ maximum number of edges appearing in a polytope of Δ. Then $\operatorname{dim} C_{d}^{r}(\Delta)=H P\left(C^{r}(\widehat{\Delta}), d\right)$ for $d \geq(2 F-1)(r+1)-1$.

$$
\operatorname{dim} C_{d}^{0}(\Delta)=\frac{5}{2} d^{2}-\frac{1}{2} d+1 \text { for } d \geq 2
$$

(By Theorem must have agreement for $d \geq 6$)

Agreement for non-simplicial splines

Comm. Alg
and Approx.
Theory
Michael DiPasquale

Background and Central Questions

Using
commutative algebra

Planar
Dimension Formulas

Freeness
Open
Questions

How large must d be in order for $H P\left(C^{r}(\widehat{\Delta}), d\right)=\operatorname{dim} C_{d}^{r}(\Delta)$?
Theorem: Using McDonald-Schenck Formula [D. '18]
$\Delta \subset \mathbb{R}^{2}$ a planar polytopal complex. Let $F=$ maximum number of edges appearing in a polytope of Δ. Then $\operatorname{dim} C_{d}^{r}(\Delta)=H P\left(C^{r}(\widehat{\Delta}), d\right)$ for $d \geq(2 F-1)(r+1)-1$.

$$
\operatorname{dim} C_{d}^{0}(\Delta)=\frac{6}{2} d^{2}-\frac{4}{2} d+1 \text { for } d \geq 3
$$

(By Theorem must have agreement for $d \geq 8$)

Agreement for non-simplicial splines

Comm. Alg. and Approx. Theory

Michael DiPasquale

Background and Central Questions

Using
commutative algebra

Planar
Dimension Formulas

Freeness
Open
Questions

How large must d be in order for $\operatorname{HP}\left(C^{r}(\widehat{\Delta}), d\right)=\operatorname{dim} C_{d}^{r}(\Delta)$?
Theorem: Using McDonald-Schenck Formula [D. '18]
$\Delta \subset \mathbb{R}^{2}$ a planar polytopal complex. Let $F=$ maximum number of edges appearing in a polytope of Δ. Then $\operatorname{dim} C_{d}^{r}(\Delta)=H P\left(C^{r}(\widehat{\Delta}), d\right)$ for $d \geq(2 F-1)(r+1)-1$.

$$
\operatorname{dim} C_{d}^{0}(\widehat{\Delta})=\frac{7}{2} d^{2}-\frac{7}{2} d+1 \text { for } d \geq 4
$$

(By Theorem must have agreement for $d \geq 10$)

Agreement for non-simplicial splines

Comm. Alg. and Approx. Theory

Michael DiPasquale

Background and Central Questions

Using commutative algebra

Planar
Dimension Formulas

Freeness
Open
Questions

How large must d be in order for $\operatorname{HP}\left(C^{r}(\widehat{\Delta}), d\right)=\operatorname{dim} C_{d}^{r}(\Delta)$?
Theorem: Using McDonald-Schenck Formula [D. '18]
$\Delta \subset \mathbb{R}^{2}$ a planar polytopal complex. Let $F=$ maximum number of edges appearing in a polytope of Δ. Then $\operatorname{dim} C_{d}^{r}(\Delta)=H P\left(C^{r}(\widehat{\Delta}), d\right)$ for $d \geq(2 F-1)(r+1)-1$.

$\operatorname{dim} C_{d}^{0}(\Delta)=\frac{8}{2} d^{2}-\frac{10}{2} d+1$ for $d \geq 5$
(By Theorem must have agreement for $d \geq 12$)

Low Degree: Morgan-Scot triangulation

Comm. Alg. and Approx. Theory
Michael
DiPasquale

Background
and Central

Questions

Using
commutative
algebra
Planar
Dimension
Formulas

$$
\operatorname{dim} C_{2}^{1}(\mathcal{T})=7
$$

Low Degree: Morgan-Scot triangulation

Comm. Alg. and Approx. Theory
Michael
DiPasquale

Background and Central Questions

Using
commutative
algebra
Planar
Dimension
Formulas
Freeness
Open
Questions

$\operatorname{dim} C_{2}^{1}(\mathcal{T})=7$

$\operatorname{dim} C_{2}^{1}\left(\mathcal{T}^{\prime}\right)=6$

Low Degree: Morgan-Scot triangulation

Comm. Alg. and Approx. Theory
Michael DiPasquale

Background and Central Questions

Using
commutative algebra

Planar
Dimension
Formulas
Freeness
Open
Questions

$\operatorname{dim} C_{2}^{1}(\mathcal{T})=7$

$\operatorname{dim} C_{2}^{1}\left(\mathcal{T}^{\prime}\right)=6$

Low Degree: Morgan-Scot triangulation

Comm. Alg. and Approx. Theory
Michael DiPasquale

Background and Central Questions

Using
commutative algebra

Planar
Dimension
Formulas
Freeness
Open
Questions

$\operatorname{dim} C_{2}^{1}(\mathcal{T})=7$

$\operatorname{dim} C_{2}^{1}\left(\mathcal{T}^{\prime}\right)=6$

Low Degree: Morgan-Scot triangulation

Comm. Alg and Approx. Theory
Michael DiPasquale

Background and Central Questions

Using
commutative
algebra
Planar
Dimension
Formulas
Freeness
Open
Questions

$\operatorname{dim} C_{2}^{1}(\mathcal{T})=7$ $\operatorname{dim} C_{d}^{1}(\mathcal{T})=\operatorname{dim} C_{d}^{1}\left(\mathcal{T}^{\prime}\right)$ if $d \neq 2!$

Low Degree: Morgan-Scot triangulation

$\operatorname{dim} C_{2}^{1}(\mathcal{T})=7$

$\operatorname{dim} C_{2}^{1}\left(\mathcal{T}^{\prime}\right)=6$ $\operatorname{dim} C_{d}^{1}(\mathcal{T})=\operatorname{dim} C_{d}^{1}\left(\mathcal{T}^{\prime}\right)$ if $d \neq 2!$

Conjecture (at least 30 years old)

Alfeld-Schumaker formula for $\operatorname{dim} C_{d}^{1}(\Delta)$ holds for $d \geq 3$.

Low Degree: Morgan-Scot triangulation

$\operatorname{dim} C_{2}^{1}(\mathcal{T})=7$

$\operatorname{dim} C_{2}^{1}\left(\mathcal{T}^{\prime}\right)=6$ $\operatorname{dim} C_{d}^{1}(\mathcal{T})=\operatorname{dim} C_{d}^{1}\left(\mathcal{T}^{\prime}\right)$ if $d \neq 2!$

Conjecture (at least 30 years old)

Alfeld-Schumaker formula for $\operatorname{dim} C_{d}^{1}(\Delta)$ holds for $d \geq 3$.
Only $\operatorname{dim} C_{2}^{1}(\Delta)$ can differ from expected dimension formula

Part IV: Freeness

Freeness

Comm. Alg
and Approx.
Theory
Michael DiPasquale

Background and Central Questions

Using commutative algebra

Planar
Dimension
Formulas
Freeness

Open

Questions
$C^{r}(\widehat{\Delta})$ is free (as $\mathbb{R}\left[x_{0}, \ldots, x_{d}\right]$-module) means there are $F_{1}, \ldots, F_{k} \in C^{r}(\widehat{\Delta})$ so that every $F \in C^{r}(\widehat{\Delta})$ can be written uniquely as a polynomial combination of F_{1}, \ldots, F_{k}.

Freeness

Comm. Alg
and Approx.
Theory
Michael DiPasquale

Background
and Central Questions

Using commutative algebra

Planar
Dimension
Formulas
Freeness

Open

Questions
$C^{r}(\widehat{\Delta})$ is free (as $\mathbb{R}\left[x_{0}, \ldots, x_{d}\right]$-module) means there are $F_{1}, \ldots, F_{k} \in C^{r}(\widehat{\Delta})$ so that every $F \in C^{r}(\widehat{\Delta})$ can be written uniquely as a polynomial combination of F_{1}, \ldots, F_{k}.

- (Schenck '97): If Δ is simplicial, $C^{r}(\widehat{\Delta})$ free $\Longleftrightarrow H_{i}(\mathcal{R} / \mathcal{J})=0$

Freeness

Comm. Alg
and Approx.
Theory
Michael DiPasquale

Background
and Central
Questions
Using
commutative algebra

Planar
Dimension
Formulas
Freeness

Open

Questions
$C^{r}(\widehat{\Delta})$ is free (as $\mathbb{R}\left[x_{0}, \ldots, x_{d}\right]$-module) means there are $F_{1}, \ldots, F_{k} \in C^{r}(\widehat{\Delta})$ so that every $F \in C^{r}(\widehat{\Delta})$ can be written uniquely as a polynomial combination of F_{1}, \ldots, F_{k}.

- (Schenck '97): If Δ is simplicial, $C^{r}(\widehat{\Delta})$ free $\Longleftrightarrow H_{i}(\mathcal{R} / \mathcal{J})=0$
- (Δ non-simplicial) Generically, $C^{r}(\widehat{\Delta})$ free $\Longrightarrow H_{i}(\mathcal{R} / \mathcal{J})=0$

Freeness

Comm. Alg
and Approx
Theory
Michael DiPasquale

Background and Central Questions

Using commutative algebra

Planar
Dimension
Formulas
Freeness
$C^{r}(\widehat{\Delta})$ is free (as $\mathbb{R}\left[x_{0}, \ldots, x_{d}\right]$-module) means there are $F_{1}, \ldots, F_{k} \in C^{r}(\widehat{\Delta})$ so that every $F \in C^{r}(\widehat{\Delta})$ can be written uniquely as a polynomial combination of F_{1}, \ldots, F_{k}.

- (Schenck '97): If Δ is simplicial, $C^{r}(\widehat{\Delta})$ free $\Longleftrightarrow H_{i}(\mathcal{R} / \mathcal{J})=0$
- (Δ non-simplicial) Generically, $C^{r}(\widehat{\Delta})$ free $\Longrightarrow H_{i}(\mathcal{R} / \mathcal{J})=0$
- Upshot is much easier dimension computation that often works in all degrees.
$C^{r}(\widehat{\Delta})$ is free (as $\mathbb{R}\left[x_{0}, \ldots, x_{d}\right]$-module) means there are $F_{1}, \ldots, F_{k} \in C^{r}(\widehat{\Delta})$ so that every $F \in C^{r}(\widehat{\Delta})$ can be written uniquely as a polynomial combination of F_{1}, \ldots, F_{k}.
- (Schenck '97): If Δ is simplicial, $C^{r}(\widehat{\Delta})$ free $\Longleftrightarrow H_{i}(\mathcal{R} / \mathcal{J})=0$
- (Δ non-simplicial) Generically, $C^{r}(\widehat{\Delta})$ free $\Longrightarrow H_{i}(\mathcal{R} / \mathcal{J})=0$
- Upshot is much easier dimension computation that often works in all degrees.
- Many widely-used planar partitions Δ actually satisfy the property that $C^{r}(\widehat{\Delta})$ is free (type I and II triangulations, cross-cut partitions, rectangular meshes) [Schenck '97]
$C^{r}(\widehat{\Delta})$ is free (as $\mathbb{R}\left[x_{0}, \ldots, x_{d}\right]$-module) means there are $F_{1}, \ldots, F_{k} \in C^{r}(\widehat{\Delta})$ so that every $F \in C^{r}(\widehat{\Delta})$ can be written uniquely as a polynomial combination of F_{1}, \ldots, F_{k}.
- (Schenck '97): If Δ is simplicial, $C^{r}(\widehat{\Delta})$ free $\Longleftrightarrow H_{i}(\mathcal{R} / \mathcal{J})=0$
- (Δ non-simplicial) Generically, $C^{r}(\widehat{\Delta})$ free $\Longrightarrow H_{i}(\mathcal{R} / \mathcal{J})=0$
- Upshot is much easier dimension computation that often works in all degrees.
- Many widely-used planar partitions Δ actually satisfy the property that $C^{r}(\widehat{\Delta})$ is free (type I and II triangulations, cross-cut partitions, rectangular meshes) [Schenck '97]
- (Δ a planar triangulation) $C_{d}^{1}(\Delta)=$ expected dimension for $d \geq 2$ if and only if $C^{1}(\widehat{\Delta})$ is free.

C^{0} simplicial splines

Comm. Alg
and Approx
Theory
Michael
DiPasquale

Basis for $C_{1}^{0}(\Delta)$ is 'Courant functions' or 'Tent functions'

Background
and Central
Questions
Using
commutative
algebra
Planar
Dimension
Formulas
Freeness
Open
Questions

C^{0} simplicial splines

Comm. Alg
and Approx
Theory
Michael
DiPasquale

Basis for $C_{1}^{0}(\Delta)$ is 'Courant functions' or 'Tent functions'
Background and Central Questions

Using
commutative
algebra
Planar
Dimension
Formulas
Freeness
Open
Questions

C^{0} simplicial splines

Comm. Alg
and Approx
Theory
Michael
DiPasquale

Basis for $C_{1}^{0}(\Delta)$ is 'Courant functions' or 'Tent functions'

C^{0} simplicial splines

Comm. Alg
and Approx
Theory
Michael
DiPasquale

Basis for $C_{1}^{0}(\Delta)$ is 'Courant functions' or 'Tent functions'

C^{0} simplicial splines

Comm. Alg
and Approx
Theory
Michael
DiPasquale

Basis for $C_{1}^{0}(\Delta)$ is 'Courant functions' or 'Tent functions'

C^{0} simplicial splines

Comm. Alg
and Approx
Theory
Michael
DiPasquale

Basis for $C_{1}^{0}(\Delta)$ is 'Courant functions' or 'Tent functions'

C^{0} simplicial splines

Comm. Alg
and Approx
Theory
Michael
DiPasquale

Basis for $C_{1}^{0}(\Delta)$ is 'Courant functions' or 'Tent functions'

C^{0} simplicial splines

Comm. Alg
and Approx
Theory
Michael
DiPasquale

Basis for $C_{1}^{0}(\Delta)$ is 'Courant functions' or 'Tent functions'

C^{0} simplicial splines

Comm. Alg
and Approx
Theory
Michael
DiPasquale

Basis for $C_{1}^{0}(\Delta)$ is 'Courant functions' or 'Tent functions'

C^{0} simplicial splines

Comm. Alg.
and Approx.
Theory
Michael
DiPasquale

Basis for $C_{1}^{0}(\Delta)$ is 'Courant functions' or 'Tent functions'

- $\operatorname{dim} C_{1}^{0}(\Delta)=$ number of vertices of Δ

C^{0} simplicial splines

Basis for $C_{1}^{0}(\Delta)$ is 'Courant functions' or 'Tent functions'

- $\operatorname{dim} C_{1}^{0}(\Delta)=$ number of vertices of Δ
- $C^{0}(\Delta)$ is generated as an algebra by tent functions [Billera-Rose '92]

Face rings of simplicial complexes

Comm. Alg.
and Approx
Theory
Michael DiPasquale

Face Ring of Δ

Δ a simplicial complex.

$$
A_{\Delta}=\mathbb{R}\left[x_{v} \mid v \text { a vertex of } \Delta\right] / I_{\Delta},
$$ non-faces.

where I_{Δ} is the ideal generated by monomials corresponding to

Face rings of simplicial complexes

Face Ring of Δ

Δ a simplicial complex.

$$
A_{\Delta}=\mathbb{R}\left[x_{v} \mid v \text { a vertex of } \Delta\right] / I_{\Delta},
$$

where I_{Δ} is the ideal generated by monomials corresponding to non-faces.

Face rings of simplicial complexes

Face Ring of Δ

Δ a simplicial complex.

$$
A_{\Delta}=\mathbb{R}\left[x_{v} \mid v \text { a vertex of } \Delta\right] / I_{\Delta},
$$

where I_{Δ} is the ideal generated by monomials corresponding to non-faces.

- Nonfaces are
$\{1,2,3,4\},\{2,3,4\}$
- $I_{\Delta}=\left\langle x_{2} x_{3} x_{4}\right\rangle$
- $A_{\Delta}=$
$\mathbb{R}\left[x_{1}, x_{2}, x_{3}, x_{4}\right] / I_{\Delta}$
C^{0} simplicial splines

Comm. Alg.
and Approx. Theory

Michael DiPasquale

Background and Central Questions

Using
commutative algebra

Planar
Dimension
Formulas
Freeness
Open
Questions
C^{0} for Simplicial Splines [Billera-Rose '92]
$C^{0}(\widehat{\Delta}) \cong A_{\Delta}$, the face ring of Δ.

C^{0} simplicial splines

Comm. Alg.
and Approx.
Theory
Michael
DiPasquale

Background
and Central Questions
C^{0} for Simplicial Splines [Billera-Rose '92]
$C^{0}(\widehat{\Delta}) \cong A_{\Delta}$, the face ring of Δ.
Why is this an isomorphism?

- Send x_{v} to tent function at vertex v.
- Product of tent functions is zero if correspond to nonface.

C^{0} simplicial splines

C^{0} for Simplicial Splines [Billera-Rose '92]
$C^{0}(\widehat{\Delta}) \cong A_{\Delta}$, the face ring of Δ.
Why is this an isomorphism?

- Send x_{v} to tent function at vertex v.
- Product of tent functions is zero if correspond to nonface.

Consequences:

- $C^{0}(\widehat{\Delta})$ is entirely combinatorial!
- $\operatorname{dim} C_{d}^{0}(\Delta)=\sum_{i=0}^{n} f_{i}\binom{d-1}{i}$ for $d>0$, where $f_{i}=\# i$-faces of Δ.
- If Δ is homeomorphic to a disk, then $C^{0}(\widehat{\Delta})$ is free as a $S=\mathbb{R}\left[x_{0}, \ldots, x_{n}\right]$ module.
- If Δ is shellable, then degrees of free generators for $C^{0}(\widehat{\Delta})$ as S-module can be read off the h-vector of Δ.

Cautionary Tale I

Comm. Alg.
and Approx.
Theory
Michael
DiPasquale

Nonfreeness for Polytopal Complexes [D. '12]
$C^{0}(\widehat{\Delta})$ need not be free if Δ has nonsimplicial faces [D. '12].

Background

Using

Cautionary Tale I

Comm. Alg.
and Approx.
Theory
Michael DiPasquale

Background
and Central Questions

Using
commutative algebra

Planar
Dimension
Formulas
Freeness

Nonfreeness for Polytopal Complexes [D. '12]

$C^{0}(\widehat{\Delta})$ need not be free if Δ has nonsimplicial faces [D. '12].

$$
(-2,-2) \quad(2,-2)
$$

$C^{0}(\widehat{\Delta})$ is a free $\mathbb{R}[x, y, z]$-module

Cautionary Tale I

Comm. Alg.
and Approx.
Theory
Michael
DiPasquale

Nonfreeness for Polytopal Complexes [D. '12]

$C^{0}(\widehat{\Delta})$ need not be free if Δ has nonsimplicial faces [D. '12].

Background

Using
commutative algebra

Planar
Dimension
Formulas
Freeness

$C^{0}(\widehat{\Delta})$ is not a free $\mathbb{R}[x, y, z]$-module

Cautionary Tale I

Comm. Alg.
and Approx.
Theory
Michael
DiPasquale

Nonfreeness for Polytopal Complexes [D. '12]

$C^{0}(\widehat{\Delta})$ need not be free if Δ has nonsimplicial faces [D. '12].

Background
$(-2,3)$

$$
(-2,-2) \quad(2,-2)
$$

$C^{0}(\widehat{\Delta})$ is a free $\mathbb{R}[x, y, z]$-module

Cross-Cut Partitions

A partition of a domain D is called a cross-cut partition if the union of its two-cells are the complement of a line arrangement.

Cross-Cut Partitions

Using

A partition of a domain D is called a cross-cut partition if the union of its two-cells are the complement of a line arrangement.

Cross-Cut Partitions

A partition of a domain D is called a cross-cut partition if the union of its two-cells are the complement of a line arrangement.

- Basis for $C_{d}^{r}(\Delta)$ and $\operatorname{dim} C_{d}^{r}(\Delta)$ [Chui-Wang '83]
- $C^{r}(\widehat{\Delta})$ is free for any r [Schenck '97]

Cautionary Tale II: Ziegler's Pair

```
Comm. Alg.
and Approx.
    Theory
    Michael
    DiPasquale
Background
and Central
Questions
Using
commutative
algebra
Planar
Dimension
Formulas
Freeness
Open
Questions
```

Cross-cut partitions fail to be free in \mathbb{R}^{3} !

Cautionary Tale II: Ziegler's Pair

Cross-cut partitions fail to be free in \mathbb{R}^{3} ! $\mathcal{A}_{t}=$ union of hyperplanes defined by the vanishing of the forms (t is considered a parameter):

$$
\begin{array}{lll}
x & x+y+z & 2 x+y+z \\
y & 2 x+3 y+z & 2 x+3 y+4 z \\
z & (1+t) x+(3+t) z & (1+t) x+(2+t) y+(3+t) z
\end{array}
$$

Cautionary Tale II: Ziegler's Pair

$$
\begin{array}{lll}
x & x+y+z & 2 x+y+z \\
y & 2 x+3 y+z & 2 x+3 y+4 z \\
z & (1+t) x+(3+t) z & (1+t) x+(2+t) y+(3+t) z
\end{array}
$$

\mathcal{A}_{t} has six triple lines (where three planes intersect) for most choices of t; these lie on a non-degenerate conic if $t=0$.

Cautionary Tale II: Ziegler's Pair

Cross-cut partitions fail to be free in \mathbb{R}^{3} ! $\mathcal{A}_{t}=$ union of hyperplanes defined by the vanishing of the forms (t is considered a parameter):

$$
\begin{array}{lll}
x & x+y+z & 2 x+y+z \\
y & 2 x+3 y+z & 2 x+3 y+4 z \\
z & (1+t) x+(3+t) z & (1+t) x+(2+t) y+(3+t) z
\end{array}
$$

\mathcal{A}_{t} has six triple lines (where three planes intersect) for most choices of t; these lie on a non-degenerate conic if $t=0$.

- Let Δ_{t} be the polytopal complex formed by closures of connected components of $[-1,1] \times[-1,1] \times[-1,1] \backslash \mathcal{A}_{t}$. (there are 62 polytopes)

Cautionary Tale II: Ziegler's Pair

Cross-cut partitions fail to be free in \mathbb{R}^{3} !
$\mathcal{A}_{t}=$ union of hyperplanes defined by the vanishing of the forms (t is considered a parameter):

$$
\begin{array}{lll}
x & x+y+z & 2 x+y+z \\
y & 2 x+3 y+z & 2 x+3 y+4 z \\
z & (1+t) x+(3+t) z & (1+t) x+(2+t) y+(3+t) z
\end{array}
$$

\mathcal{A}_{t} has six triple lines (where three planes intersect) for most choices of t; these lie on a non-degenerate conic if $t=0$.

- Let Δ_{t} be the polytopal complex formed by closures of connected components of $[-1,1] \times[-1,1] \times[-1,1] \backslash \mathcal{A}_{t}$. (there are 62 polytopes)
- $C^{0}\left(\Delta_{t}\right)$ is free if and only if $t \neq 0$!

Comm. Alg.
and Approx. Theory

Michael
DiPasquale

Background
and Central
Questions
Using
commutative algebra

Planar
Dimension
Formulas
Freeness
Open
Questions

Part V: Open Questions

Open Questions

Comm. Alg.
and Approx.
Theory
Michael
DiPasquale

Background and Central Questions

Using
commutative algebra

Planar Dimension Formulas

Freeness
Open Questions

- Long standing open question (planar triangulations): Compute $\operatorname{dim} C_{3}^{1}(\Delta)$

Open Questions

- Long standing open question (planar triangulations): Compute $\operatorname{dim} C_{3}^{1}(\Delta)$
- More generally (planar triangulations): Compute $\operatorname{dim} C_{d}^{r}(\Delta)$ for $r+1 \leq d \leq 3 r+1$

Open Questions

- Long standing open question (planar triangulations): Compute $\operatorname{dim} C_{3}^{1}(\Delta)$
- More generally (planar triangulations): Compute $\operatorname{dim} C_{d}^{r}(\Delta)$ for $r+1 \leq d \leq 3 r+1$
- More generally (planar polytopal complexes): Compute $\operatorname{dim} C_{d}^{r}(\Delta)$ for $r+1 \leq d \leq(2 F-1)(r+1)$ (F maximum number of edges in a two-cell)

Open Questions

- Long standing open question (planar triangulations): Compute $\operatorname{dim} C_{3}^{1}(\Delta)$
- More generally (planar triangulations): Compute $\operatorname{dim} C_{d}^{r}(\Delta)$ for $r+1 \leq d \leq 3 r+1$
- More generally (planar polytopal complexes): Compute $\operatorname{dim} C_{d}^{r}(\Delta)$ for $r+1 \leq d \leq(2 F-1)(r+1)$ (F maximum number of edges in a two-cell)
- If $\Delta \subset \mathbb{R}^{3}, \operatorname{dim} C_{d}^{r}(\Delta)$ is not known for $d \gg 0$ except for $r=1, d \geq 8$ on generic triangulations [Alfeld-Schumaker-Whitely '93]. (connects to fat point schemes in \mathbb{P}^{2})

Open Questions

Comm. Alg.
and Approx.
Theory
Michael
DiPasquale

Background
and Central
Questions

- Bounds on $\operatorname{dim} C_{d}^{r}(\Delta)$ for $\Delta \subset \mathbb{R}^{3}$ [Mourrain-Villamizar '15] (most recent). Improve these!
Using
commutative
algebra
Planar
Dimension
Formulas
Freeness
Open
Questions

Open Questions

Comm. Alg
and Approx.
Theory
Michael
DiPasquale

Background
and Central
Questions
Using
commutative
algebra
Planar
Dimension
Formulas
Freeness
Open
Questions

- Bounds on $\operatorname{dim} C_{d}^{r}(\Delta)$ for $\Delta \subset \mathbb{R}^{3}$ [Mourrain-Villamizar '15] (most recent). Improve these!
- Characterize freeness $C^{r}(\Delta)$. Start with C^{0} splines on cross-cut partitions Δ in \mathbb{R}^{3}.

Open Questions

- Bounds on $\operatorname{dim} C_{d}^{r}(\Delta)$ for $\Delta \subset \mathbb{R}^{3}$ [Mourrain-Villamizar '15] (most recent). Improve these!
- Characterize freeness $C^{r}(\Delta)$. Start with C^{0} splines on cross-cut partitions Δ in \mathbb{R}^{3}.
- Compute $\operatorname{dim} C_{d}^{r}(\Delta)$ for semi-algebraic splines on planar partitions for $d \gg 0$

Comm. Alg.
and Approx. Theory

Michael
DiPasquale

Background
and Central Questions

Using
commutative algebra

Planar
Dimension
Formulas
Freeness
Open
Questions

THANK YOU!

Comm. Alg.
and Approx. Theory

Michael
DiPasquale

Background
and Central
Questions
Using
commutative algebra

Part V: Semi-algebraic Splines

Planar
Dimension
Formulas
Freeness
Open
Questions

Curved Partitions

Comm. Alg.
and Approx.
Theory
Michael
DiPasquale

Background
and Central
Questions
Using
commutative
algebra
Planar
Dimension
Formulas
Freeness
Open
Questions

More general problem: Compute $\operatorname{dim} C_{d}^{r}(\Delta)$ where Δ is a partition whose arcs consist of irreducible algebraic curves.

Curved Partitions

Comm. Alg
and Approx.
Theory
Michael DiPasquale

Background
and Central
Questions
Using
commutative
algebra
Planar
Dimension
Formulas
Freeness
Open
Questions

More general problem: Compute $\operatorname{dim} C_{d}^{r}(\Delta)$ where Δ is a partition whose arcs consist of irreducible algebraic curves.

$$
x^{2}+(y-1)^{2}=1,
$$

Curved Partitions

Comm. Alg
and Approx.
Theory
Michael DiPasquale

Background
and Central
Questions
Using commutative algebra

Planar Dimension Formulas

Freeness

More general problem: Compute $\operatorname{dim} C_{d}^{r}(\Delta)$ where Δ is a partition whose arcs consist of irreducible algebraic curves.

Call functions in $C^{r}(\Delta)$ semi-algebraic splines since they are defined over regions given by polynomial inequalities, or semi-algebraic sets.

Semi-algebraic Splines

Comm. Alg.
and Approx.
Theory
Michael
DiPasquale

Background
and Central Questions
Using
commutative algebra
Planar
Dimension
Formulas
Freeness
Open Questions

Work in semi-algebraic splines:

- First definitions made in [Wang '75] - algebraic criterion for splines carries over verbatim

Semi-algebraic Splines

Comm. Alg.
and Approx.
Theory
Michael DiPasquale

Background
and Central Questions
Using
commutative algebra

Planar
Dimension
Formulas
Freeness
Open Questions

Work in semi-algebraic splines:

- First definitions made in [Wang '75] - algebraic criterion for splines carries over verbatim
- Studied using sheaf-theoretic techniques [Stiller '83]

Semi-algebraic Splines

Work in semi-algebraic splines:

- First definitions made in [Wang '75] - algebraic criterion for splines carries over verbatim
- Studied using sheaf-theoretic techniques [Stiller '83]
- Recent work suggests semi-algebraic splines may be increasingly useful in finite element method [Davydov-Kostin-Saeed '16]

Linearizing

Comm. Alg.
and Approx.
Theory
Michael DiPasquale

Background and Central Questions

Using commutative algebra

Planar Dimension Formulas

Freeness
Open Questions

- Focus on $\Delta \subset \mathbb{R}^{2}$ with single interior vertex at $(0,0)$.
- Let Δ_{L} be the subdivision formed by replacing curves by tangent rays at origin

Linearizing

Comm. Alg
and Approx.
Theory
Michael DiPasquale

Background and Central Questions

Using
commutative
algebra
Planar
Dimension
Formulas
Freeness
Open
Questions

- Focus on $\Delta \subset \mathbb{R}^{2}$ with single interior vertex at $(0,0)$.
- Let Δ_{L} be the subdivision formed by replacing curves by tangent rays at origin

Δ

Linearizing

Comm. Alg
and Approx.
Theory
Michael DiPasquale

Background and Central Questions

Using
commutative algebra

Planar Dimension Formulas

Freeness
Open Questions

- Focus on $\Delta \subset \mathbb{R}^{2}$ with single interior vertex at $(0,0)$.
- Let Δ_{L} be the subdivision formed by replacing curves by tangent rays at origin

Tangent Lines

Linearizing

Comm. Alg
and Approx.
Theory
Michael DiPasquale

Background and Central Questions
Using
commutative algebra

Planar
Dimension
Formulas
Freeness
Open Questions

- Focus on $\Delta \subset \mathbb{R}^{2}$ with single interior vertex at $(0,0)$.
- Let Δ_{L} be the subdivision formed by replacing curves by tangent rays at origin

Δ_{L}

Linearizing the local case

Michael DiPasquale

Background and Central Questions

Using
commutative algebra

Planar Dimension Formulas

Freeness
Open
Questions

Theorem: Linearizing $\operatorname{dim} C_{d}^{r}(\Delta)$ [D.-Sottile-Sun '16]
Let Δ consist of n irreducible curves of degree d_{1}, \ldots, d_{n} meeting at $(0,0)$ with distinct tangents and no common zero in $\mathbb{P}^{2}(\mathbb{C})$ other than $(0,0)$. Then, for $d \gg 0$,

$$
\operatorname{dim} C_{d}^{r}(\Delta)=\operatorname{dim} C_{d}^{r}\left(\Delta_{L}\right)
$$

$$
+\sum_{i=1}^{n}\left(\binom{d+2-d_{i}(r+1)}{2}-\binom{d-r-1}{2}\right)
$$

Linearizing the local case

Theorem: Linearizing $\operatorname{dim} C_{d}^{r}(\Delta)$ [D.-Sottile-Sun '16]
Let Δ consist of n irreducible curves of degree d_{1}, \ldots, d_{n} meeting at $(0,0)$ with distinct tangents and no common zero in $\mathbb{P}^{2}(\mathbb{C})$ other than $(0,0)$. Then, for $d \gg 0$,

$$
\operatorname{dim} C_{d}^{r}(\Delta)=\operatorname{dim} C_{d}^{r}\left(\Delta_{L}\right)
$$

$$
+\sum_{i=1}^{n}\left(\binom{d+2-d_{i}(r+1)}{2}-\binom{d-r-1}{2}\right)
$$

- Not true if tangents are not distinct!

Linearizing the local case

Theorem: Linearizing $\operatorname{dim} C_{d}^{r}(\Delta)$ [D.-Sottile-Sun '16]
Let Δ consist of n irreducible curves of degree d_{1}, \ldots, d_{n} meeting at $(0,0)$ with distinct tangents and no common zero in $\mathbb{P}^{2}(\mathbb{C})$ other than $(0,0)$. Then, for $d \gg 0$,
$\operatorname{dim} C_{d}^{r}(\Delta)=\operatorname{dim} C_{d}^{r}\left(\Delta_{L}\right)$

$$
+\sum_{i=1}^{n}\left(\binom{d+2-d_{i}(r+1)}{2}-\binom{d-r-1}{2}\right)
$$

- Not true if tangents are not distinct!
- Proof uses saturation and toric degenerations (from commutative algebra)

Linearizing the local case

Theorem: Linearizing $\operatorname{dim} C_{d}^{r}(\Delta)$ [D.-Sottile-Sun '16]

Let Δ consist of n irreducible curves of degree d_{1}, \ldots, d_{n} meeting at $(0,0)$ with distinct tangents and no common zero in $\mathbb{P}^{2}(\mathbb{C})$ other than $(0,0)$. Then, for $d \gg 0$,
$\operatorname{dim} C_{d}^{r}(\Delta)=\operatorname{dim} C_{d}^{r}\left(\Delta_{L}\right)$

$$
+\sum_{i=1}^{n}\left(\binom{d+2-d_{i}(r+1)}{2}-\binom{d-r-1}{2}\right)
$$

- Not true if tangents are not distinct!
- Proof uses saturation and toric degenerations (from commutative algebra)
- Bounds on d for when equality holds are also considered, using regularity

