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Piecewise Polynomials

A piecewise polynomial function, continuously differentiable to some order.
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Piecewise Polynomials

A piecewise polynomial function, continuously differentiable to some order.

The Zwart-Powell element, a C! spline of degree 2
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Univariate Splines

Most widely studied case: approximation of a function f(x) over an
interval A = [a,b] C R by C" piecewise polynomials.
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Univariate Splines

Most widely studied case: approximation of a function f(x) over an
interval A = [a,b] C R by C" piecewise polynomials.

m Subdivide A = [a, b] into subintervals:
A = [ap,a1] U [a1,a2] U--- U [an—1, an)

m Find a basis for the vector space C}(A) of C" piecewise polynomial
functions on A with degree at most d (B-splines!)

m Find best approximation to f(x) in C}j(A)
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Two Subintervals

A = [ap, a1] U [a1, a2] (assume WLOG a; = 0)
(.)€ C)(B) = A)0)=£)0)for0<i<r
— x*(h-h)

= (h—f)e ™)
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Two Subintervals

A = [ap, a1] U [a1, a2] (assume WLOG a; = 0)
(. h) € C(A) <= A)(0)=£"(0)for0<i<r
— x*(h-h)
= (h—f)e ™)

Even more explicitly:
m fi(x) = by + bix+ -+ bgx?
mhH(x)=c+ax+-+cgx?
m (fy,fi) € Cj(A) <= bo=cp,..., b =c.
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Two Subintervals

A = [ap, a1] U [a1, a2] (assume WLOG a; = 0)

(f,h) € Cy(A) — £D0)=£)0) foro<i<r
= x*(h - f)
= (h—f)e ™)
Even more explicitly:
m fi(x) = by + bix+ -+ bgx?

m H(x)=co+ cax+ -+ cgx?
u (fo,fl)ECg(A) <~ by=c,..., b =ct.

P - B | ifd <r
d'mcd(A)_{(d+l)+(d—r) ifd>r

Note: dim C}(A) is polynomial in d for d > r.
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Higher Dimensions

More General Problem: Compute dim C}(A) where A C R" is
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Higher Dimensions

More General Problem: Compute dim C}(A) where A C R" is

m a polytopal complex
m pure n-dimensional

m a pseudomanifold
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Higher Dimensions

More General Problem: Compute dim C}(A) where A C R" is

m a polytopal complex

m pure n-dimensional

m a pseudomanifold

A polytopal complex
(Algebraic) Spline Criterion:
m If 7 € A,_1, I, = affine form vanishing on affine span of 7
m Collection {f;}scn, glue to F € C"(A) <= for every pair of

adjacent facets 01,02 € A, with o1 Noy =7 € Ay, PP (5, — f5,)
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Computation of dim CJ(A) for higher dimensions initiated by
[Strang ‘73] in connection with finite element method

Data fitting in approximation theory

[Farin '97] Computer Aided Geometric Design (CAGD) - building
surfaces by splines.

[ [Payne ‘06] Toric Geometry - Equivariant cohomology rings of toric
varieties are rings of continuous splines on the fan (under appropriate
conditions).
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Part |: Continuous Splines and Freeness
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Continuous Splines

(0,2)

(2,0)

(_27 _2)
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Continuous Splines
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Continuous Splines

(F1, R, F3) € CO(A) —
dfi, f, f3 so that

FL—Fo= fx
Fo—F3= flx—y)
Fs—F1 = fy

Michael DiPasquale
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Spline Matrix

(F1, F2, F3) € CO(A) <= there are
fi, b, f3 so that
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Spline Matrix

(F1, F2, F3) € CO(A) <= there are
fi, b, f3 so that

F1
1 -1 0 x 0 0 ?
0 1 -10 x—y 0 ;| =0
-1 0 1 0 0 vy fl

2

—f

This matrix constructed in [Billera-Rose ‘91].
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m C%(A), the kernel of this matrix, is a graded R[x, y]— module
(matrix entries are homogeneous).

m CO°(A), := splines of degree d
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Observations

m C%(A), the kernel of this matrix, is a graded R[x, y]— module
(matrix entries are homogeneous).

m C%(A)g := splines of degree d
m Every spline in C%(A) can be written uniquely as a polynomial
combination of the three splines pictured below:

p> o
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Observations, continued

CO(A) is a free R = R[x, y]-module generated in degrees 0,1,2.
Record degrees as CO(A) = R @ R(—1) @ R(-2).
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Observations, continued

CO(A) is a free R = R[x, y]-module generated in degrees 0,1,2.
Record degrees as CO(A) = R @ R(—1) @ R(-2).

dim C%(A)g = <d1Ll> + ((dJri) _1> + <(d+i) _2>
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Observations, continued

CO(A) is a free R = R[x, y]-module generated in degrees 0,1,2.
Record degrees as CO(A) = R @ R(—1) @ R(-2).

dim C%(A)g = <d1Ll> + ((dJri) _1> + <(d+i) _2>

= 3dford>1
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Observations, continued

CO(A) is a free R = R[x, y]-module generated in degrees 0,1,2.
Record degrees as CO(A) = R @ R(—1) @ R(-2).

dim C%(A)g = <d1Ll> + ((dJri) _1> + <(d+i) _2>

= 3dford>1
fﬁm?(})i d+2\ ((d+2)—1\ ((d+2)-2
metmn (45 (<27) (427
3 3

- 5d2+§d—|—1ford20,

where A is the cone over A.
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Coning Construction

m A C R™1 denotes the cone over A C R”.

p>
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Coning Construction

m A C R™1 denotes the cone over A C R”.

p>

-~

A A

L] C’(ﬁ) is always a graded algebra over S = R[xq, .. ., Xa]
m C/(A) = C'(D)g [Billera-Rose ‘91]
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Consequences of Freeness

m Freeness of C"(A) = straightforward computation of dim Ci(A).
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Consequences of Freeness

m Freeness of C"(A) = straightforward computation of dim Ci(A).

m [Schenck-Stillman ‘97l Many widely-used partitions A actually satisfy
the property that C"(A) is free (type | and Il triangulations, cross-cut
partitions, rectangular meshes, etc.)
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Consequences of Freeness

Freeness of C'(A) = straightforward computation of dim Ci(A).

[Schenck-Stillman '97] Many widely-used partitions A actually satisfy
the property that C"(A) is free (type | and Il triangulations, cross-cut
partitions, rectangular meshes, etc.)

[Billera-Rose ‘92] criteria for freeness in terms of localization

[Yuzvinsky '92] criteria for freeness in terms of sheaves on posets

[Schenck '97] criteria for freeness in terms of homologies of a chain
complex (A simplicial)
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Face Rings of Simplicial Complexes

Face Ring of A

A a simplicial complex.
Ap = R[x,|v a vertex of A]/Ia,

where I is the ideal generated by monomials corresponding to non-faces.
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Face Rings of Simplicial Complexes

Face Ring of A

A a simplicial complex.
Ap = R[x,|v a vertex of A]/Ia,

where I is the ideal generated by monomials corresponding to non-faces.

3
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Face Rings of Simplicial Complexes

Face Ring of A

A a simplicial complex.
Ap = R[x,|v a vertex of A]/Ia,

where I is the ideal generated by monomials corresponding to non-faces.

3

m Nonfaces are
{1,2,3,4},{2,3,4}

] IA = <X2X3X4>

m Ap = R[xa, x2, x3, xa]/In
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Freeness for C° simplicial splines

CY for Simplicial Splines [Billera ‘89]
] Co(ﬁ) = Ap, the face ring of A.
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Freeness for C° simplicial splines

CY for Simplicial Splines [Billera ‘89]
] Co(ﬁ) = Ap, the face ring of A.

n —
m dim CY(A) = Y f;(d ; 1) for d > 0, where f; = #i-faces of A.
i=0
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Freeness for C° simplicial splines

CY for Simplicial Splines [Billera ‘89]
] Co(ﬁ) = Ap, the face ring of A.

n —
m dim CY(A) = Y f;(d ; 1) for d > 0, where f; = #i-faces of A.
i=0

Moreover, if A is homeomorphic to a disk, then Co(ﬁ) is free.
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Nonsimplicial Case

Nonfreeness for Polytopal Complexes [D. ‘12]

Co(ﬁ) need not be free if A has nonsimplicial faces.
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Nonsimplicial Case

Nonfreeness for Polytopal Complexes [D. ‘12]

Co(ﬁ) need not be free if A has nonsimplicial faces.

(—2,3) (2,3)

(_27 _2) (27 _2)
CO(A) is not a free module over R[x, y, z].
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Part Il: Hilbert Polynomials and Regularity
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Some Graded Commutative Algebra

Given a finitely generated graded S = R[xy, ..., xp]-module M (like
cr(h)).

m HF(M,d) := dim My is the Hilbert function of M.
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Some Graded Commutative Algebra

Given a finitely generated graded S = R[xy, ..., xp]-module M (like
cr(h)).

m HF(M,d) := dim My is the Hilbert function of M.

mIf d >>0, HF(M,d) = HP(M, d), where HP(M, d) is the Hilbert
polynomial of M.
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Some Graded Commutative Algebra

Given a finitely generated graded S = R[xy, ..., xp]-module M (like
cr(h)).
m HF(M,d) := dim My is the Hilbert function of M.

mIf d >>0, HF(M,d) = HP(M, d), where HP(M, d) is the Hilbert
polynomial of M.

m Upshot: dim Cj(A) = dim C’(ﬁ)d is eventually polynomial in d (in
fact, linear combination of binomial coefficients)
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The Good News and the Bad News

Good news: HP(C”(&), d) has been computed for A C R2.

m A simplicial: [Alfeld-Schumaker ‘90, Hong ‘91],
[Ibrahim-Schumaker ‘91]

m A nonsimplicial: [McDonald-Schenck ‘09]
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The Good News and the Bad News

Good news: HP(C”(&), d) has been computed for A C R2.

m A simplicial: [Alfeld-Schumaker ‘90, Hong ‘91],
[Ibrahim-Schumaker ‘91]

m A nonsimplicial: [McDonald-Schenck ‘09]
Bad news: dim C}(A) is still a mystery for small d.
m dim C}(A) still unknown for A C R2!
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Planar Hilbert Polynomials

Planar Simplicial Dimension [Alfeld-Schumaker ‘90]

If A C R? is a simply connected triangulation and d > 3r + 1, then

= (1) (1o (1) (1)) e
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Planar Hilbert Polynomials

Planar Simplicial Dimension [Alfeld-Schumaker ‘90]

If A C R? is a simply connected triangulation and d > 3r + 1, then

= (1) (1o (1) (1)) e

] fl-o is the number of interior i-dimensional faces.
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Planar Hilbert Polynomials

Planar Simplicial Dimension [Alfeld-Schumaker ‘90]

If A C R? is a simply connected triangulation and d > 3r + 1, then

= (1) (1o (1) (1)) e

] fl-o is the number of interior i-dimensional faces.

m n(v;) = # distinct slopes at an interior vertex v;.
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Planar Hilbert Polynomials

Planar Simplicial Dimension [Alfeld-Schumaker ‘90]

If A C R? is a simply connected triangulation and d > 3r + 1, then

= (1) (1o (1) (1)) e

m 10 is the number of interior i-dimensional faces.
m n(v;) = # distinct slopes at an interior vertex v;.

m o =3 max{(r+1+j(1-n(v))),0}.
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Planar Hilbert Polynomials

Planar Simplicial Dimension [Alfeld-Schumaker ‘90]

If A C R? is a simply connected triangulation and d > 3r + 1, then
2 d— 1 d+2 2
ding(A):(d;— >+( £+ )ff’—(( er )—(r; >>@°+a,

fl-o is the number of interior i-dimensional faces.

n(v;) = # distinct slopes at an interior vertex v;.
oi = ;max{(r+1+j(1—n(v))),0}.
o= 0;.
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Planar Hilbert Polynomials

Planar Simplicial Dimension [Alfeld-Schumaker ‘90]

If A C R? is a simply connected triangulation and d > 3r + 1, then
2 — 1 2 2
dim C5(A) = (d;r >+(d £+ )ff’— <(d;r ) - <“2r )) 0+,

f0 is the number of interior i-dimensional faces.
n(v;) = # distinct slopes at an interior vertex v;.
oi = ;max{(r+1+j(1—n(v))),0}.

o= 0;.

Conjecture [Schenck ‘97]
Above formula holds for d > 2r + 1.
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Planar Hilbert Polynomials

m A C R? a simply connected polytopal complex
m [McDonald-Schenck '09] give formulas for coefficients of

o~

HP(C"(A), d)
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Planar Hilbert Polynomials

m A C R? a simply connected polytopal complex
m [McDonald-Schenck '09] give formulas for coefficients of

o~

HP(C"(A), d)

HP(C®(R), d) = gdz ~5d+2 HP(C'(A).d) = gdz —Sd+1
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Planar Hilbert Polynomials

m A C R? a simply connected polytopal complex
m [McDonald-Schenck '09] give formulas for coefficients of

o~

HP(C"(A), d)

HP(C®(R), d) = gd2 ~5d+2 HP(C'(A).d) = gdz —Sd+1

How large does d have to be for dim Cj(A) = HP(Cr(ﬁ), d)?
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Planar Hilbert Polynomials

m A C R? a simply connected polytopal complex
m [McDonald-Schenck '09] give formulas for coefficients of

o~

HP(C"(A), d)

HP(C®(R), d) = gd2 ~5d+2 HP(C'(A).d) = gdz —Sd+1

How large does d have to be for dim Cj(A) = HP(Cr(ﬁ), d)?
In simplicial case, d > 3r + 1 suffices.
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Large degree generators

Proposition [D. ‘14]

Given an n-polytope A C R" and a choice of codimension 1 face
T € Ap—1, there is a polytopal complex P(A) having A as a facet so that

Every codimension 1 face of A except 7 is interior to P(A)

There is a minimal generator of C’(7§(Z)) supported only on A.
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Large degree generators

Proposition [D. ‘14]

Given an n-polytope A C R" and a choice of codimension 1 face
T € Ap—1, there is a polytopal complex P(A) having A as a facet so that

Every codimension 1 face of A except 7 is interior to P(A)

There is a minimal generator of C’(7§(Z)) supported only on A.

hoafl
Py

C’(A) has minimal generator of degree 4(r + 1)
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A Positive Result

Agreement of Hilbert Function and Polynomial [D. ‘14]

A C R? a planar polytopal complex. Let F = maximum number of edges
of a polygon of A. Then

HP(C'(A),d) = dim C(A) for d > (2F —1)(r +1) — 1
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A Positive Result

Agreement of Hilbert Function and Polynomial [D. ‘14]

A C R? a planar polytopal complex. Let F = maximum number of edges
of a polygon of A. Then

HP(C'(A),d) = dim C(A) for d > (2F —1)(r +1) — 1

This is the first such result for nonsimplicial complexes.
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A Positive Result

Agreement of Hilbert Function and Polynomial [D. ‘14]

A C R? a planar polytopal complex. Let F = maximum number of edges
of a polygon of A. Then

HP(C'(A),d) = dim C(A) for d > (2F —1)(r +1) — 1

This is the first such result for nonsimplicial complexes.

HP(C°(A), d)
_ 5 2 1
= 2d 2d+2
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A Positive Result

Agreement of Hilbert Function and Polynomial [D. ‘14]

A C R? a planar polytopal complex. Let F = maximum number of edges
of a polygon of A. Then

HP(C'(A),d) = dim C(A) for d > (2F —1)(r +1) — 1

This is the first such result for nonsimplicial complexes.

mF=4
= ding(A):

1
gd2—§d+2ford26

HP(C°(A), d)
_ 5 2 1
= 2d 2d+2
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A Positive Result

Agreement of Hilbert Function and Polynomial [D. ‘14]

A C R? a planar polytopal complex. Let F = maximum number of edges
of a polygon of A. Then

HP(C'(A),d) = dim C(A) for d > (2F —1)(r +1) — 1

This is the first such result for nonsimplicial complexes.

mF=4
= ding(A):

1
gd2—§d+2ford26

m Macaulay2:

—
HP(C?(4A),d) dim C9(A) = gd2 - %d +2ford>1

5 1
=_d>-Zd+2
2 24
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The Technique: Regularity

Set S = R[x1,...,xn]
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The Technique: Regularity

Set S = R[x1,...,xn]
A graded S-module M has a graded minimal free resolution:

0—Fs— Fs_1— - Fo—M—0, where F; =P, S(—aj)
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The Technique: Regularity

Set S = R[x1,...,xn]
A graded S-module M has a graded minimal free resolution:

0—Fs— Fs_1— - Fo—M—0, where F; =P, S(—aj)

m Projective dimension pdim(M) := ¢

m Castelnuovo-Mumford Regularity reg(M) := max(a; — /)
hJ
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The Technique: Regularity

Set S = R[x1,...,xn]
A graded S-module M has a graded minimal free resolution:

0—Fs— Fs_1— - Fo—M—0, where F; =P, S(—aj)

m Projective dimension pdim(M) := ¢

m Castelnuovo-Mumford Regularity reg(M) := max(a; — /)
ij

m Note: M = @;5(—a;) = reg(M) = max{a;}
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The Technique: Regularity

Set S = R[x1,...,xn]
A graded S-module M has a graded minimal free resolution:

0—Fs— Fs_1— - Fo—M—0, where F; =P, S(—aj)
m Projective dimension pdim(M) := ¢
m Castelnuovo-Mumford Regularity reg(M) := max(a; — /)
iJ

m Note: M = @;5(—a;) = reg(M) = max{a;}
reg(M) governs when HF(M, d) = HP(M, d) [Eisenbud ‘05]:

HF (M, d) = HP(M, d) for d > reg(M) + pdim(M) — n + 1
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The Technique: Regularity

Set S = R[x1,...,xn]
A graded S-module M has a graded minimal free resolution:

0—Fs— Fs_1— - Fo—M—0, where F; =P, S(—aj)

m Projective dimension pdim(M) := ¢

m Castelnuovo-Mumford Regularity reg(M) := max(a; — /)
i
m Note: M = @;5(—a;) = reg(M) = max{a;}
reg(M) governs when HF(M, d) = HP(M, d) [Eisenbud ‘05]:
HF (M, d) = HP(M, d) for d > reg(M) + pdim(M) — n + 1

~

Results on previous slide follow from bounding reg(C"(4)).
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Obtaining the Regularity Bound

Two key properties:

Regularity of any module in 0 -+ A — B — C — 0 can be bounded
by regularity of other two.
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Obtaining the Regularity Bound

Two key properties:
Regularity of any module in 0 -+ A — B — C — 0 can be bounded
by regularity of other two.
If AC B is a submodule and pdim(B) < codim(B/A), then
reg(B) < reg(A).
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Obtaining the Regularity Bound

Two key properties:

Regularity of any module in 0 -+ A — B — C — 0 can be bounded
by regularity of other two.

If AC B is a submodule and pdim(B) < codim(B/A), then
reg(B) < reg(A).

m Regularity bound obtained by finding an approximation
LS™(A) C Cr(A) satisfying property 2.
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Obtaining the Regularity Bound

Two key properties:

Regularity of any module in 0 -+ A — B — C — 0 can be bounded
by regularity of other two.

If AC B is a submodule and pdim(B) < codim(B/A), then
reg(B) < reg(A).

m Regularity bound obtained by finding an approximation
LS™1(A) C CT(A) satisfying property 2.

L] LS“l(ﬁ) is the subalgebra of C’(ﬁ) generated by splines supported
on the union of two adjacent facets.
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Obtaining the Regularity Bound

Two key properties:

Regularity of any module in 0 -+ A — B — C — 0 can be bounded
by regularity of other two.

If AC B is a submodule and pdim(B) < codim(B/A), then
reg(B) < reg(A).

m Regularity bound obtained by finding an approximation
LS™1(A) C CT(A) satisfying property 2.

L] LS“l(ﬁ) is the subalgebra of C’(ﬁ) generated by splines supported
on the union of two adjacent facets.

m Property 1 used to break bounding reg(LS"1(A)) down into a local
problem by fitting into exact complexes.
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Obtaining the Regularity Bound

Two key properties:

Regularity of any module in 0 -+ A — B — C — 0 can be bounded
by regularity of other two.

If AC B is a submodule and pdim(B) < codim(B/A), then
reg(B) < reg(A).

m Regularity bound obtained by finding an approximation
LS™1(A) C CT(A) satisfying property 2.

= LS“l(ﬁ) is the subalgebra of C’(ﬁ) generated by splines supported
on the union of two adjacent facets.

m Property 1 used to break bounding reg(LS"1(A)) down into a local
problem by fitting into exact complexes.

m Local problem solved directly
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Other Applications

Two other applications of algebraic techniques:

m Analogue of basis with local support for nonsimplicial A [D. ‘14]
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Other Applications

Two other applications of algebraic techniques:

m Analogue of basis with local support for nonsimplicial A [D. ‘14]

m Bounds on dim C;(A), A C R?,R3 simplicial
[Mourrain-Villamizar ‘13, Mourrain-Villamizar ‘14] - latter involves
problem of fat points in P2
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Other Applications

Two other applications of algebraic techniques:
m Analogue of basis with local support for nonsimplicial A [D. ‘14]
m Bounds on dim C;(A), A C R?,R3 simplicial
[Mourrain-Villamizar ‘13, Mourrain-Villamizar ‘14] - latter involves
problem of fat points in P2

Main Problem:
Planar case: Lower existing regularity bounds! R
Planar simplicial case: Show dim C}(A) = HP(C"(A), d) for d > 2r + 1.

m Regularity techniques in [D. ‘14] give equality in simplicial case for
d > 3r + 2 (one off from Alfeld-Schumaker result).

m [Schenck-Stiller ‘02] use vector bundle techniques on projective space
to approach regularity of C"(A).
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