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T-meshes
Many bivariate spline spaces used in applications are based on the
tensor-product of univariate spline spaces, and then are using a
tensor-product mesh (B-splines, NURBS).

Sph



T-meshes
Many bivariate spline spaces used in applications are based on the
tensor-product of univariate spline spaces, and then are using a
tensor-product mesh (B-splines, NURBS).

Sph Spv



T-meshes
Many bivariate spline spaces used in applications are based on the
tensor-product of univariate spline spaces, and then are using a
tensor-product mesh (B-splines, NURBS).

Sp = Sph ⊗ Spv = {polynomial in each cell, with suitable regularity}
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T-meshes

T-meshes allow local refinement!



T-meshes

LOCAL REFINEMENT allows:

I adaptive algorithms
I isogeometric analysis
I data fitting

I lower dimension spaces (lower computational costs)

I handling unstructured data with a structured space

I ...and more...



T-meshes

Definition
A T-mesh T is a collection of axis-aligned rectangles T2 = {σi}N2

i=1

such that Ω ≡ ∪iσi is connected and any pair of rectangles (cells)
σi , σj ∈ T2 intersect each other only on their edges.

I T1 = T h
1 ∪ T v

1 = set of horizontal and vertical (closed) edges
in
⋃
σ∈T2

∂σ

I T0 :=
⋃
τ∈T1

∂τ = set of vertices;



(Polynomial) splines spaces over T-meshes

A smoothness distribution on a T-mesh T is a map

r : T o
1 := {interior edges of T } −→ IN,

For any vertex γ ∈ T o
0 := {interior vertices of T }

rh(γ) := r(τv ), rv (γ) := r(τh)

such that γ = τh ∩ τv and τh ∈ T o,h
1 , τv ∈ T o,v

1 .

The space of splines over a T-mesh T of bi-degree p = (ph, pv )
and smoothness r is

Sr
p(T ) :=

{
s ∈ C r(T ) : s|σ ∈ Pp, σ ∈ T2

}
.

where Pp is the space of polynomials of bi-degree p, and we say
that f ∈ C r(T ) if the partial derivatives of f up to order r(τ) are
continuous across the edge τ , for τ ∈ T o

1 .
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Extension to non-polynomial (Tchebycheffian) splines?

Motivations:

I exactly reproducing relevant shapes (cycloids, helices,
transcendental curves, etc.)

I compared to NURBS, they can be used to reproduce the same
shapes but with a better behaviour with respect to
differentiation and integration

Tchebycheffian spline spaces are spaces of splines which, in each
interval, belong to an Extended Tchebycheff space Tp([a, b]) (ex:
generalized splines).
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Extension to non-polynomial (Tchebycheffian) splines?
Motivations:

I exactly reproducing relevant shapes (cycloids, helices,
transcendental curves, etc.)

I compared to NURBS, they can be used to reproduce the same
shapes but with a better behaviour with respect to
differentiation and integration

Tchebycheffian spline spaces are spaces of splines which, in each
interval, belong to a space Tp([a, b]) of dimension p + 1 of
functions defined on [a, b] such that any Hermite interpolation
problem with p + 1 data in [a, b] has a unique solution in Tp([a, b])
(ex: generalized splines).



Spaces of Tchebycheffian splines over T-meshes

Let T be a T-mesh with a smoothness distribution r,
p := (ph, pv ) ∈ IN× IN with ph, pv ≥ 0, and
T := (Th,Tv ) := (Th

ph
,Tv

pv ). The space of Tchebycheffian splines

over the T-mesh T , denoted by ST,r
p (T ), is the space

ST,r
p (T ) :=

{
s ∈ C r(T ) : s|σ ∈ PT

p , σ ∈ T2

}
,

where
PT

p := Th
ph

([ah, bh])⊗ Tv
pv ([av , bv ]),

with Th
ph

([ah, bh]) and Tv
pv ([av , bv ]) are two extended Tchebycheff

spaces of dimension ph + 1 and pv + 1 respectively.



Dimension: the homological approach
The approach generalizes [Mourrain; 2014] (polynomial case).
We define the following subspaces of PT

p :

I for any vertical edge τ = {x̄} × [av , bv ]

IT,r
p (τ) :=

{
q ∈ PT

p : Dk
x q(x̄ , y) ≡ 0,

∀y ∈ [av , bv ], k = 0, . . . , r(τ)
}
,

I for any horizontal edge τ = [ah, bh]× {ȳ}

IT,r
p (τ) :=

{
q ∈ PT

p : D l
yq(x , ȳ) ≡ 0,

∀x ∈ [ah, bh], l = 0, . . . , r(τ)
}
,

I for any vertex γ = (x̄ , ȳ)

IT,r
p (γ) :=

{
q ∈ PT

p : Dk
xD

l
yq(x̄ , ȳ) ≡ 0,

k = 0, . . . , rh(γ), l = 0, . . . , rv (γ)
}
.

Hermite interpolant assumption crucial for their dimension!
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Dimension: the homological approach - basic idea

0 0

↓ ↓

IT,r
p (T o) : 0

∂̂2→
⊕
τ∈T o

1

IT,r
p (τ)

∂̂1→
⊕
γ∈T o

0

IT,r
p (γ)

∂̂0→ 0

↓ ↓ ↓

PT
p (T o) : 0

∂3→
⊕
σ∈T2

PT
p

∂2→
⊕
τ∈T o

1

PT
p

∂1→
⊕
γ∈T o

0

PT
p

∂0→ 0

↓ ↓ ↓

ST,r
p (T o) : 0

∂̄3→
⊕
σ∈T2

PT
p

∂̄2→
⊕
τ∈T o

1

PT
p /IT,r

p (τ)
∂̄1→
⊕
γ∈T o

0

PT
p /IT,r

p (γ)
∂̄0→ 0

↓ ↓ ↓
0 0 0



Dimension: the homological approach - basic idea
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⊕
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Similarly, the map ∂1 is:⊕
τ∈T o

1

PT
p

∂1−→
⊕
γ∈T o

0

PT
p

[qτ1 , qτ2 , ..., qτN1
] −→ [qγ1 , qγ2 , ..., qγN0

]
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1
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Similarly, the map ∂1 is:⊕
τ∈T o

1

PT
p

∂1−→
⊕
γ∈T o

0

PT
p

[..., qτi1 , ..., qτi2 , ..., qτi3 , ..., qτi4 , ...] −→ [..., qγk , ...]

where τi1 , τi2 are the horizontal edges having γk as endpoint, and
τi3 , τi4 are the vertical edges having γk as endpoint.



Similarly, the map ∂1 is:⊕
τ∈T o

1

PT
p

∂1−→
⊕
γ∈T o

0

PT
p

[..., qτi1 , ..., qτi2 , ..., qτi3 , ..., qτi4 , ...] −→ [..., qτi1 − qτi2 + qτi3 − qτi4 , ...]

where τi1 , τi2 are the horizontal edges having γk as endpoint, and
τi3 , τi4 are the vertical edges having γk as endpoint.



Computing the dimension

Considering the Euler characteristic of ST,r
p (T o), we get

dim

(⊕
σ∈T2

PT
p

)
− dim

(⊕
τ∈T o

1

PT
p /IT,r

p (τ)

)
+ dim

(⊕
γ∈T o

0

PT
p /IT,r

p (γ)

)
= dim

(
H2(ST,r

p (T o))
)
− dim

(
H1(ST,r

p (T o))
)

+ dim
(
H0(ST,r

p (T o))
)
.
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Theorem (B., Lyche, Manni, Roman, Speleers)

dim
(
ST,r

p (T )
)

=
∑
σ∈T2

(ph + 1)(pv + 1)

−
∑
τ∈T o,h

1

(ph + 1)(r(τ) + 1)

−
∑

τ∈T o,v
1

(r(τ) + 1)(pv + 1)

+
∑
γ∈T o

0

(rh(γ) + 1)(rv (γ) + 1) + D,

where
D := dim

(
H0(IT,r

p (T o))
)
.

Can we bound D in a meaningful way?
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Bounding D
Given d := (d1, ..., dm), 0 ≤ di ≤ p, di ∈ N, i = 1, ...,m, an
Extended Tchebycheff space Tp of dimension p + 1 on [a, b] has
the d-sum property if for any m distinct points x1, ..., xm ∈ [a, b]

dim
( m∑

i=1

IT,di
p (xi )

)
= min

(
p + 1,

m∑
i=1

p − di

)
,

ITp ,di (xi ) := {q ∈ tp : D lq(xi ) = 0, l = 0, ..., di}.

Hermite interp. assumption not enough!

Theorem (B., Lyche, Manni, Speleers)

An Extended Complete Tchebycheff space (ECT space) Tp, that
is, spanned by a set of functions {u0, ..., up} such that

det(Hermite collocation matrix of u0, ..., up at x0, ..., xk) > 0,

for any x0 ≤ ... ≤ xk , k = 0, ..., p, satisfies the d-sum property for
any d := (d1, ..., dm), 0 ≤ di ≤ p, di ∈ N, i = 1, ...,m and any m.
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Idea of the proof

Use the generalized power basis

I It exists if and only if Tp is an ECT

I mimics the properties of the monomial
basis{(x − c)k/k!}k=0,...,p (derivatives at c)

I write everything in this basis



Bounding D

A segment ρ composed of edges of T o
1 which cannot be extended

by adding other edges of T o
1 and does not intersect the boundary

of the T-mesh, is a maximal interior segment.

mish(T ) := {horizontal maximal interior segments},
misv (T ) := {vertical maximal interior segments},
mis(T ) := mish(T ) ∪misv (T ).

MIS highlighted in red.



Bounding D
Given an ordering ι of mis(T ), for any ρ ∈ mis(T ), we denote by
Γι(ρ) the set of vertices of ρ which do not belong to ρ′ ∈ mis(T )
with ι(ρ′) > ι(ρ). For any ρ ∈ mis(T ) we define its weight

ωι(ρ) :=

{∑
γ∈Γι(ρ)(ph − rh(γ)), if ρ ∈ mish(T )∑
γ∈Γι(ρ)(pv − rv (γ)), if ρ ∈ misv (T )

.

Theorem (B., Lyche, Manni, Roman, Speleers)

If ι is an ordering of mis(T ), and ST,r
p (T ) is an Extended

Tchebycheff spline space with T = (Th
ph
,Tv

pv ) being a couple of
ECT spaces, then

0 ≤ D ≤
∑

ρ∈mish(T )

(ph + 1− ωι(ρ))+ (pv − r(ρ))

+
∑

ρ∈misv (T )

(ph − r(ρ)) (pv + 1− ωι(ρ))+,



How to get T-meshes for which D = 0?

Algorithm (generalizes [Mourrain;2014]) For each new edge:

I insert the new edge τ

I if τ does not extend an existing edge, then extend it so that
so that the horizontal (vertical) maximal segment containing
τ , say ρ(τ), intersects Ω or satisfies ωι(ρ(τ)) ≥ ph + 1
(ωι(ρ(τ)) ≥ pv + 1)

If you start from a T-mesh with ωι(ρ) ≥ ph + 1 for any
ρ ∈ mish(T ) and ωι(ρ) ≥ pv + 1 for any ρ ∈ misv (T ), such
property is preserved by the algorithm.

=⇒ The algorithm always gives for which D = 0



How to get T-meshes for which D = 0?

Definition (Cycle (of MIS))

A sequence ρ1, . . . , ρn of composite edges (maximal interior
segments) in a T-mesh forms a cycle (of MIS) if each ρi has one of
its endpoints in the interior of ρi+1 (ρn+1 := ρ1).

Sufficient conditions which avoid extending inserted edges:

I T-meshes without cycles and ph ≥ 2r(τ) + 1 for all τ ∈ T o,v
1

and pv ≥ 2r(τ) + 1 for all τ ∈ T o,h
1

I T-meshes without cycles of MIS and ph ≥ 2r(τ) + 1 for all

τ ∈ T o,v
1 and pv ≥ 2r(τ) + 1 for all τ ∈ T o,h

1

I hierarchical T-meshes (the T-mesh is obtained by repeated
refinement of a tensor-product mesh) and ph ≥ 2r(τ) + 1 for

all τ ∈ T o,v
1 and pv ≥ 2r(τ) + 1 for all τ ∈ T o,h

1
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Concluding remarks

I The results of polynomial and Tchebycheffian spline spaces
are very similar (identical under the assumption we made)

I Key points: ET spaces and ECT spaces (implying d− sum
property) assumptions

I The main spaces used for nonpolynomial spline are ECT
(trigonometric, hyperbolic)

I Knowing the dimension of the space is the first step to
construct an efficient basis

Thank you for your kind attention!
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