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Many bivariate spline spaces used in applications are based on the
tensor-product of univariate spline spaces, and then are using a
tensor-product mesh (B-splines, NURBS).
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Sp =Sp, ® Sp, = {polynomial in each cell, with suitable regularity}
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T-meshes allow local refinement!



T-meshes

LOCAL REFINEMENT allows:

» adaptive algorithms

> isogeometric analysis
» data fitting

» lower dimension spaces (lower computational costs)
» handling unstructured data with a structured space

» ...and more...



T-meshes
Definition
A T-mesh T is a collection of axis-aligned rectangles 7> = {o; ,N:21
such that Q = Ujo; is connected and any pair of rectangles (cells)
o;,0j € T2 intersect each other only on their edges.

N W B O

» T1 = T{" UTY = set of horizontal and vertical (closed) edges

in Uyep; 00
> To:= U, ez, OT = set of vertices;



(Polynomial) splines spaces over T-meshes
A smoothness distribution on a T-mesh 7 is a map
r: 7° := {interior edges of T} — NN,
For any vertex v € 7y := {interior vertices of 7}
() =r(mv),  n(y) = r(7h)

such that v = 7, N7, and 7 € 7", 7, € T,
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For any vertex v € 7y := {interior vertices of 7}
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The space of splines over a T-mesh T of bi-degree p = (pp, pv)
and smoothness r is

SH(T) = {s€C(T): s, €Pp 0T }.

where P, is the space of polynomials of bi-degree p, and we say
that f € C"(T) if the partial derivatives of f up to order r(7) are
continuous across the edge 7, for 7 € T°.



Extension to non-polynomial (Tchebycheffian) splines?

Motivations:
» exactly reproducing relevant shapes (cycloids, helices,
transcendental curves, etc.)
» compared to NURBS, they can be used to reproduce the same
shapes but with a better behaviour with respect to
differentiation and integration
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Tchebycheffian spline spaces are spaces of splines which, in each
interval, belong to an Extended Tchebycheff space Tp([a, b]) (ex:
generalized splines).
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Extension to non-polynomial (Tchebycheffian) splines?

Motivations:
» exactly reproducing relevant shapes (cycloids, helices,
transcendental curves, etc.)
» compared to NURBS, they can be used to reproduce the same
shapes but with a better behaviour with respect to
differentiation and integration

Tchebycheffian spline spaces are spaces of splines which, in each
interval, belong to a space Ty([a, b]) of dimension p + 1 of
functions defined on [a, b] such that any Hermite interpolation
problem with p + 1 data in [a, b] has a unique solution in T,([a, b])
(ex: generalized splines).
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Spaces of Tchebycheffian splines over T-meshes

Let 7 be a T-mesh with a smoothness distribution r,

P := (pn, pv) € N x N with pp, p, > 0, and

T:=(Tp, T,) = (Tgh,’ﬂ‘gv). The space of Tchebycheffian splines
over the T-mesh T, denoted by S’,{”(T), is the space

3" (T) = {s€C(T):5,€P;,0€ T},

where
Py := T} ([an, bn]) ® T}, ([av, bu]),

with ']I‘l';h([ah, by]) and T ([av, by]) are two extended Tchebycheff
spaces of dimension p, + 1 and p, + 1 respectively.



Dimension: the homological approach
The approach generalizes [Mourrain; 2014] (polynomial case).
We define the following subspaces of IP’;:

» for any vertical edge 7 = {X} x [ay, b,]
]ITr —{qGPT Dkq(x,y) =0,
Vy € [av, b, k=0,...,r(7) },
» for any horizontal edge 7 = [ap, by] X {¥}
I'(r):={q€P]: D)q(x,7) =0,
Vx € [ah,bh] /—0....,r(7)},
» for any vertex v = (X, )

I3 " (v :{quT DD q(x, y)zo,
=
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The approach generalizes [Mourrain; 2014] (polynomial case).
We define the following subspaces of IP’;:

» for any vertical edge 7 = {X} x [ay, b,]

]ITr —{qGPT Dkq(x,y) =0,
Vy € lay, by, k=0,..., (7')},

» for any horizontal edge 7 = [ap, by] X {y}

I'(r):={q€P]: D)q(x,7) =0,
VXE[ah,bh] /—0....,r(7)},

» for any vertex v = (X, y)

I5"(v) :={qeP; : DkD’q(i 7) =0,
=

Hermite interpolant assumption crucial for their dimension!



Dimension: the homological approach - basic idea

0 0
4 1
I8 (T°) 0 P 3P
TETY YETL
\ 1
o o o
703 ey 3 pry S ey
oc€T> T€T° 7€T°
!
e (T°): 03 Prl 3 @ PT /17 (7) @ PT /1T ()
oc€T> TETY YETY

+ + +
0 0 0



Dimension: the homological approach - basic idea

D = Dr

o€Ts 7_67—10

(901 Gz -3 Qo | — (912 ras oo Gry, ]



Dimension: the homological approach - basic idea

D

oc€T>

(9015 oz - Qo |

Pr

TETY

[ Gris -]

T



Dimension: the homological approach - basic idea
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where o; and o; are the cells containing the edge 7.
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Dimension: the homological approach - basic idea

D = D e

€T, TETYP

[ Qo5 s Qojy o] — [--) Go; — Qo5 -]

where o; and o; are the cells containing the edge 7.

The spline space can be written as

S5 (T) ={a€C(Q): a4 :=ql, €P} Vo € T}

= {901, Gon,] € @ ]P); “qo; — Qo € H;’r(T) VT e T}
o€TH

= ker(0p) = Hz(Gg’r(To))



Similarly, the map 9 is:
T ! T
DF = D
7‘6710 "/67—00

[qu’qua"quNl] — [q"Yl’q'Y27"‘7q'YNO]



Similarly, the map 9 is:
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Similarly, the map 0; is:
T 01 T
D = D F
7'67-10 76760

[ Qriy s oos Qg ooy Qg5 o0 Gy » o] — [os Qs -]

where 7;, 7j, are the horizontal edges having v as endpoint, and
Tiy» Ti, are the vertical edges having 7, as endpoint.



Similarly, the map 0; is:

T O T
D = SV
TE'TIO 76760

["'7 qT,-17---7Clr,-2’ ---7CIT,-37 A qT,'47 ] — ["'7qT,'1 _ qT,'2 + qT,'3 _ qT,'47"']

where 7;, 7, are the horizontal edges having v as endpoint, and
Tiy» Ti, are the vertical edges having 7, as endpoint.



Computing the dimension

Considering the Euler characteristic of " (7°), we get

dim (@ PJ) —dim < &P PJ/JI}'@)) + dim ( &P PE/H}’(@)

o€T> reT? VET?

= dim(H2(&)"(T°))) — dim(H1(&)"(T°))) + dim(Ho(S " (T°))).
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Computing the dimension
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Theorem (B., Lyche, Manni, Roman, Speleers)

dim (ST(T)) = 3 (pn + 1)(pv + 1)

o€
= ) (pr+1)(r(1) +1)
7'6710’h

- > (™) +1)(p +1)
TETIO’V

+ ) () + D(n(7) +1) + D,

€Ty

where

D := dim (Ho(j}'(TO))).



Theorem (B., Lyche, Manni, Roman, Speleers)

dim (S7(T)) = > (pa + 1)(py + 1)

c€T>

= > (pr+1)(r(r) +1)
TETOh

- > (r(n)+1)(p +1)
TETIO’V

+ ) () + () + 1) +

€Ty

where

D := dim (HO(J}'(T"))).

Can we bound D in a meaningful way?

D

Y



Bounding D
Givend :=(di,...,dm), 0< d;<p, dieN,i=1,...,m, an
Extended Tchebycheff space T, of dimension p + 1 on [a, b] has
the d-sum property if for any m distinct points xi, ..., xm € [a, b]

dim 3 IT9(x;)) = min (p +1, 3 p—di,
(515400) =min (41, 50- )
ITrdi(x;) == {q € t,: D'q(x))=0,1=0,...,d}.

Hermite interp. assumption not enough!
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Givend :=(di,...,dm), 0< d;<p, dieN,i=1,...,m, an
Extended Tchebycheff space T, of dimension p + 1 on [a, b] has
the d-sum property if for any m distinct points xi, ..., xm € [a, b]

dim(zm:]lg’d’(x,-)) = min (p+ 1, ijp — di)a
i=1

i=1
179 (x;) == {qg € t,: D'q(x))=0,1=0,...,d;}.
Hermite interp. assumption not enough!

Theorem (B., Lyche, Manni, Speleers)

An Extended Complete Tchebycheff space (ECT space) Tp, that
is, spanned by a set of functions {uo, ..., up} such that

det( Hermite collocation matrix of ug, ..., up at xo, ..., xx) > 0,

for any xo < ... < xx, k =0, ..., p, satisfies the d-sum property for
anyd:= (di,....,dn), 0<di<p,d €N, i=1,..,mand any m.



Idea of the proof

Use the generalized power basis

> It exists if and only if T, is an ECT

» mimics the properties of the monomial
basis{(x — ¢)*/k!}x—o...p (derivatives at c)

> write everything in this basis



Bounding D

A segment p composed of edges of 7;° which cannot be extended
by adding other edges of 7,° and does not intersect the boundary
of the T-mesh, is a maximal interior segment.

MISp(T) := {horizontal maximal interior segments},

(
MIS, (7)) := {vertical maximal interior segments},

MIS(T) := Misy(T) UMis, (7).

MIS highlighted in red.



Bounding D

Given an ordering ¢ of M1S(7), for any p € MI1S(7), we denote by
I'.(p) the set of vertices of p which do not belong to p' € MiS(T)

with ¢(p") > «(p). For any p € Mm1S(T) we define its weight

(o) = {zven(m(ph (7). if p € Misy(T)
L Ser. (P = n(1))s if p € 1S, (T)

Theorem (B., Lyche, Manni, Roman, Speleers)

If L is an ordering of Mis(T), and Sy"(T) is an Extended
Tchebycheff spline space with T = (']I‘gh, T}, ) being a couple of
ECT spaces, then

0<D< > (pn+1-wi(p))s(pv—r(p))

peMIs,(T)

+ Z (pn = r(p)) (pv + 1 = wi(p))+,
pemis, (T)



How to get T-meshes for which D = 07

Algorithm (generalizes [Mourrain;2014]) For each new edge:
> insert the new edge 7
» if 7 does not extend an existing edge, then extend it so that
so that the horizontal (vertical) maximal segment containing

7, say p(7), intersects Q or satisfies w,(p(7)) > pp + 1
(wi(p(7)) = pv +1)

If you start from a T-mesh with w,(p) > pp + 1 for any
p € MISp(T) and w,(p) > py, + 1 for any p € M1S,(T), such
property is preserved by the algorithm.

—> The algorithm always gives for which D =0



How to get T-meshes for which D = 07

Definition (Cycle (of MIS))

A sequence p1, ..., p, of composite edges (maximal interior
segments) in a T-mesh forms a cycle (of MIS) if each p; has one of
its endpoints in the interior of pi+1 (Pn+1 = p1)-



How to get T-meshes for which D = 07

Definition (Cycle (of MIS))

A sequence p1, ..., p, of composite edges (maximal interior
segments) in a T-mesh forms a cycle (of MIS) if each p; has one of
its endpoints in the interior of pi+1 (Pn+1 = p1)-

Sufficient conditions which avoid extending inserted edges:

» T-meshes without cycles and p, > 2r(7) + 1 for all 7 € T
and p, > 2r(7)+ 1 for all 7 € ’Tlo’h

» T-meshes without cycles of MIS and p, > 2r(7) + 1 for all
e T and p, > 2r(7) 4 1 for all 7 € T>"

» hierarchical T-meshes (the T-mesh is obtained by repeated
refinement of a tensor-product mesh) and p, > 2r(7) + 1 for
all 7 € TV and p, > 2r(7) + 1 for all 7 € 7"



Concluding remarks

» The results of polynomial and Tchebycheffian spline spaces
are very similar (identical under the assumption we made)

» Key points: ET spaces and ECT spaces (implying d — sum
property) assumptions

» The main spaces used for nonpolynomial spline are ECT
(trigonometric, hyperbolic)

» Knowing the dimension of the space is the first step to
construct an efficient basis
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Thank you for your kind attention!
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