Algebraic Methods in Spline Theory

sium

Motivating

Michael DiPasquale

SIAM 2017
Multivariate Splines and Algebraic Geometry

Splines, generally speaking

Algebraic Methods in Spline Theory

Michael
DiPasquale

Overview of Minisymposium

Motivating questions for classical
splines
Freeness of
spline modules

A spline is

Splines, generally speaking

Algebraic Methods in
Spline Theory

Michael

DiPasquale

Overview of Minisymposium

Motivating questions for classical
splines
Freeness of
spline modules

A spline is

- A piecewise function

Splines, generally speaking

Algebraic
Methods in
Spline Theory
Michael
DiPasquale

Overview of Minisymposium

Motivating questions for classical
splines
Freeness of spline modules

A spline is

- A piecewise function
- Together with 'gluing data' describing how the functions fit together

Splines, generally speaking

Algebraic
Methods in
Spline Theory
Michael
DiPasquale

Overview of Minisymposium

Motivating questions for classical splines

Freeness of spline modules

A spline is

- A piecewise function
- Together with 'gluing data' describing how the functions fit together
- Classically, splines are C^{r} piecewise polynomial functions defined over tetrahedral or polytopal subdivisions in \mathbb{R}^{n} (Myself, Tatyana Sorokina, Nelly Villamizar; numerical analysis)

Splines, generally speaking

Algebraic
Methods in
Spline Theory
Michael
DiPasquale

Overview of Minisymposium

Motivating questions for

A spline is

- A piecewise function
- Together with 'gluing data' describing how the functions fit together
- Classically, splines are C^{r} piecewise polynomial functions defined over tetrahedral or polytopal subdivisions in \mathbb{R}^{n} (Myself, Tatyana Sorokina, Nelly Villamizar; numerical analysis)
- However, non-polynomial functions may be used (Cesare Bracco; numerical analysis)

Splines, generally speaking

Algebraic
Methods in Spline Theory

Michael DiPasquale

Overview of Minisymposium

Motivating questions for classical splines

Freeness of spline modules

A spline is

- A piecewise function
- Together with 'gluing data' describing how the functions fit together
- Classically, splines are C^{r} piecewise polynomial functions defined over tetrahedral or polytopal subdivisions in \mathbb{R}^{n} (Myself, Tatyana Sorokina, Nelly Villamizar; numerical analysis)
- However, non-polynomial functions may be used (Cesare Bracco; numerical analysis)
- Or the cells of the subdivision could be semi-algebraic sets, defined by arbitrary polynomial inequalities (Peter Stiller, Frank Sottile; numerical analysis and algebraic geometry)

Splines, generally speaking

Algebraic
Methods in
Spline Theory
Michael
DiPasquale

Overview of

Minisympo-

sium
Motivating
questions for
classical
splines
Freeness of

- Or the polynomials could glue via geometric continuity to form splines on arbitrary topological spaces (Bernard Mourrain, Katharina Birner; isogeometric analysis, geometric design)

Splines, generally speaking

Algebraic
Methods in
Spline Theory
Michael DiPasquale

Overview of Minisymposium

Motivating questions for classical splines

Freeness of spline modules

- Or the polynomials could glue via geometric continuity to form splines on arbitrary topological spaces (Bernard Mourrain, Katharina Birner; isogeometric analysis, geometric design)
- Dually, the domains could be considered as vertices of a graph (even infinite!) with algebraic gluing condition across edges (Julianna Tymoczko; equivariant cohomology)

Splines, generally speaking

Algebraic
Methods in
Spline Theory
Michael DiPasquale

Overview of Minisymposium

Motivating questions for classical splines

Freeness of spline modules

- Or the polynomials could glue via geometric continuity to form splines on arbitrary topological spaces (Bernard Mourrain, Katharina Birner; isogeometric analysis, geometric design)
- Dually, the domains could be considered as vertices of a graph (even infinite!) with algebraic gluing condition across edges (Julianna Tymoczko; equivariant cohomology)
- Other work related to splines in this mini: Algebraic geometry and commutative algebra, with applications to interpolation problems (Stefan Tohaneanu, Boris Shekhtman)

Underlying space for a spline function

Algebraic
Methods in
Spline Theory
Michael
DiPasquale

Overview of Minisymposium

Motivating questions for classical
splines
Freeness of
spline modules

Work over a subdivision $\Delta \subset \mathbb{R}^{n}$ which is:

Underlying space for a spline function

Algebraic
Methods in
Spline Theory
Michael
DiPasquale

Overview of
Minisympo-
sium
Motivating questions for classical
splines

Work over a subdivision $\Delta \subset \mathbb{R}^{n}$ which is:

- A polytopal complex
- Pure n-dimensional
- A pseudomanifold

Underlying space for a spline function

Algebraic
Methods in
Spline Theory
Michael
DiPasquale

Overview of
Minisympo-

sium

Motivating questions for classical splines

Freeness of spline modules

Work over a subdivision $\Delta \subset \mathbb{R}^{n}$ which is:

- A polytopal complex
- Pure n-dimensional
- A pseudomanifold

A polytopal complex

Underlying space for a spline function

Work over a subdivision $\Delta \subset \mathbb{R}^{n}$ which is:

- A polytopal complex
- Pure n-dimensional
- A pseudomanifold

A polytopal complex

Notation:

- Δ_{i} : faces of dimension i (i-faces)
- Δ_{i}° : interior i-faces
- If $\tau \in \Delta_{n-1}, \ell_{\tau}=$ linear form cutting out affine span of τ

Splines (classical definition, algebraically speaking)

Algebraic
Methods in
Spline Theory
Michael
DiPasquale
C^{r} spline on Δ : collection $F=\left(F_{\sigma}\right)$ of polynomials $F_{\sigma} \in R=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$, for every $\sigma \in \Delta_{n}$, so that if $\sigma \cap \sigma^{\prime}=\tau \in \Delta_{n-1}$ then $\left(\ell_{\tau}\right)^{r+1} \mid\left(F_{\sigma}-F_{\sigma^{\prime}}\right)$.

Splines (classical definition, algebraically speaking)

Algebraic
Methods in
Spline Theory
Michael
DiPasquale

Overview of Minisymposium

Motivating questions for classical splines

Freeness of spline modules
C^{r} spline on Δ : collection $F=\left(F_{\sigma}\right)$ of polynomials $F_{\sigma} \in R=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$, for every $\sigma \in \Delta_{n}$, so that if $\sigma \cap \sigma^{\prime}=\tau \in \Delta_{n-1}$ then $\left(\ell_{\tau}\right)^{r+1} \mid\left(F_{\sigma}-F_{\sigma^{\prime}}\right)$.

Splines (classical definition, algebraically speaking)

Algebraic
Methods in
Spline Theory
Michael
DiPasquale
C^{r} spline on Δ : collection $F=\left(F_{\sigma}\right)$ of polynomials $F_{\sigma} \in R=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$, for every $\sigma \in \Delta_{n}$, so that if $\sigma \cap \sigma^{\prime}=\tau \in \Delta_{n-1}$ then $\left(\ell_{\tau}\right)^{r+1} \mid\left(F_{\sigma}-F_{\sigma^{\prime}}\right)$.

Overview of Minisymposium

Motivating questions for classical splines

Freeness of

 spline modules

Splines (classical definition, algebraically speaking)

Algebraic
Methods in
Spline Theory
Michael
DiPasquale

Overview of
Minisymposium

Motivating questions for classical splines

Freeness of

 spline modulesC^{r} spline on Δ : collection $F=\left(F_{\sigma}\right)$ of polynomials $F_{\sigma} \in R=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$, for every $\sigma \in \Delta_{n}$, so that if $\sigma \cap \sigma^{\prime}=\tau \in \Delta_{n-1}$ then $\left(\ell_{\tau}\right)^{r+1} \mid\left(F_{\sigma}-F_{\sigma^{\prime}}\right)$.

$S^{r}(\Delta): R$-module of all C^{r} splines on Δ

Splines (classical definition, algebraically speaking)

Algebraic
Methods in
Spline Theory
Michael
DiPasquale

Overview of Minisymposium

Motivating questions for classical splines

Freeness of spline modules
C^{r} spline on Δ : collection $F=\left(F_{\sigma}\right)$ of polynomials $F_{\sigma} \in R=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$, for every $\sigma \in \Delta_{n}$, so that if $\sigma \cap \sigma^{\prime}=\tau \in \Delta_{n-1}$ then $\left(\ell_{\tau}\right)^{r+1} \mid\left(F_{\sigma}-F_{\sigma^{\prime}}\right)$.

$S^{r}(\Delta): R$-module of all C^{r} splines on Δ $S_{d}^{r}(\Delta)$: v.s. of $F \in S^{r}(\Delta)$ with $\operatorname{deg}\left(F_{\sigma}\right) \leq d$ for all $\sigma \in \Delta_{n}$

Splines (classical definition, algebraically speaking)

Algebraic
Methods in
Spline Theory
Michael
DiPasquale

Overview of Minisymposium

Motivating questions for classical splines

Freeness of spline modules
C^{r} spline on Δ : collection $F=\left(F_{\sigma}\right)$ of polynomials $F_{\sigma} \in R=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$, for every $\sigma \in \Delta_{n}$, so that if $\sigma \cap \sigma^{\prime}=\tau \in \Delta_{n-1}$ then $\left(\ell_{\tau}\right)^{r+1} \mid\left(F_{\sigma}-F_{\sigma^{\prime}}\right)$.

$S^{r}(\Delta)$: R-module of all C^{r} splines on Δ $S_{d}^{r}(\Delta)$: v.s. of $F \in S^{r}(\Delta)$ with $\operatorname{deg}\left(F_{\sigma}\right) \leq d$ for all $\sigma \in \Delta_{n}$ $S^{r}(\Delta)_{d}:$ v.s. of $F \in S^{r}(\Delta)$ with $\operatorname{deg}\left(F_{\sigma}\right)=d$ for all $\sigma \in \Delta_{\underline{\underline{B}}}$.

Coning Construction

Algebraic
Methods in
Spline Theory
Michael
DiPasquale

Overview of Minisymposium

Motivating questions for classical
splines
Freeness of
spline modules
$\widehat{\Delta} \subset \mathbb{R}^{n+1}$ denotes cone over $\Delta \subset \mathbb{R}^{n}$.

Coning Construction

Algebraic
Methods in
Spline Theory
Michael
DiPasquale

Overview of
Minisympo-

sium

Motivating questions for classical
splines
Freeness of spline modules
$\widehat{\Delta} \subset \mathbb{R}^{n+1}$ denotes cone over $\Delta \subset \mathbb{R}^{n}$.

Δ

$\widehat{\Delta}$

Coning Construction

Algebraic
Methods in
Spline Theory
Michael
DiPasquale

Overview of
Minisympo-

sium

Motivating questions for classical splines

Freeness of spline modules
$\widehat{\Delta} \subset \mathbb{R}^{n+1}$ denotes cone over $\Delta \subset \mathbb{R}^{n}$.

$\widehat{\Delta}$

- $\ell_{\hat{\tau}}$ is the homogenization of ℓ_{τ} for $\tau \in \Delta_{n-1}$

Coning Construction

Algebraic
Methods in
Spline Theory
Michael
DiPasquale

Overview of
Minisympo-

sium

Motivating questions for classical splines

Freeness of spline modules
$\widehat{\Delta} \subset \mathbb{R}^{n+1}$ denotes cone over $\Delta \subset \mathbb{R}^{n}$.

$\widehat{\Delta}$

- $\ell_{\hat{\tau}}$ is the homogenization of ℓ_{τ} for $\tau \in \Delta_{n-1}$
- $S_{d}^{r}(\Delta) \cong S^{r}(\widehat{\Delta})_{d}$ (as v.s.)

Coning Construction

Algebraic
Methods in
Spline Theory
Michael
DiPasquale

Overview of Minisymposium

Motivating questions for classical splines

Freeness of spline modules
$\widehat{\Delta} \subset \mathbb{R}^{n+1}$ denotes cone over $\Delta \subset \mathbb{R}^{n}$.

$\widehat{\Delta}$

- $\ell_{\hat{\tau}}$ is the homogenization of ℓ_{τ} for $\tau \in \Delta_{n-1}$
- $S_{d}^{r}(\Delta) \cong S^{r}(\widehat{\Delta})_{d}$ (as v.s.)
- $S^{r}(\widehat{\Delta})=\bigoplus_{d \geq 0} S^{r}(\widehat{\Delta})_{d}$ is a graded R-module

Coning Construction

Algebraic
Methods in Spline Theory

Michael
DiPasquale

Overview of Minisymposium

Motivating questions for classical splines

Freeness of

 spline modules$\widehat{\Delta} \subset \mathbb{R}^{n+1}$ denotes cone over $\Delta \subset \mathbb{R}^{n}$.

$\widehat{\Delta}$

- $\ell_{\hat{\tau}}$ is the homogenization of ℓ_{τ} for $\tau \in \Delta_{n-1}$
- $S_{d}^{r}(\Delta) \cong S^{r}(\widehat{\Delta})_{d}$ (as v.s.)
- $S^{r}(\widehat{\Delta})=\bigoplus_{d \geq 0} S^{r}(\widehat{\Delta})_{d}$ is a graded R-module
- Call Δ central if $\mathbf{0} \in \sigma$ for every $\sigma \in \Delta_{n}$

Main problems (Numerical analysis)

Algebraic
Methods in
Spline Theory
Michael
DiPasquale

Overview of Minisymposium

Motivating questions for classical
splines

Answer in terms of combinatorial, geometric data of $\Delta \subset \mathbb{R}^{n}$:

Main problems (Numerical analysis)

Algebraic
Methods in
Spline Theory
Michael
DiPasquale

Answer in terms of combinatorial, geometric data of $\Delta \subset \mathbb{R}^{n}$:
(1) (Holy grail) Find $\operatorname{dim} S_{d}^{r}(\Delta)$ (equiv. $\operatorname{dim} S^{r}(\widehat{\Delta})_{d}$)

Main problems (Numerical analysis)

Algebraic
Methods in
Spline Theory
Michael
DiPasquale

Overview of Minisymposium

Motivating questions for classical
splines
Freeness of spline modules

Answer in terms of combinatorial, geometric data of $\Delta \subset \mathbb{R}^{n}$:
(1) (Holy grail) Find $\operatorname{dim} S_{d}^{r}(\Delta)$ (equiv. $\operatorname{dim} S^{r}(\widehat{\Delta})_{d}$)
(2) (Holier grail) Find a basis for $S_{d}^{r}(\Delta)$ (equiv. $\left.S^{r}(\widehat{\Delta})_{d}\right)$

Main problems (Numerical analysis)

Algebraic
Methods in
Spline Theory
Michael
DiPasquale

Overview of Minisymposium

Motivating questions for classical
splines
Freeness of spline modules

Answer in terms of combinatorial, geometric data of $\Delta \subset \mathbb{R}^{n}$:
(1) (Holy grail) Find $\operatorname{dim} S_{d}^{r}(\Delta)$ (equiv. $\operatorname{dim} S^{r}(\widehat{\Delta})_{d}$)
(2) (Holier grail) Find a basis for $S_{d}^{r}(\Delta)$ (equiv. $\left.S^{r}(\widehat{\Delta})_{d}\right)$

- $r=0, \Delta$ simplicial, (1),(2) known for all n (Billera '89)

Main problems (Numerical analysis)

Algebraic
Methods in
Spline Theory
Michael
DiPasquale

Overview of Minisymposium

Motivating questions for classical
splines

Answer in terms of combinatorial, geometric data of $\Delta \subset \mathbb{R}^{n}$:
(1) (Holy grail) Find $\operatorname{dim} S_{d}^{r}(\Delta)$ (equiv. $\operatorname{dim} S^{r}(\widehat{\Delta})_{d}$)
(2) (Holier grail) Find a basis for $S_{d}^{r}(\Delta)$ (equiv. $\left.S^{r}(\widehat{\Delta})_{d}\right)$

- $r=0, \Delta$ simplicial, (1),(2) known for all n (Billera '89)
- $r=0, \Delta$ polyhedral, (1) and (2) unknown even for $n=2,3$ (topic of this talk)

Main problems (Numerical analysis)

Algebraic
Methods in
Spline Theory
Michael DiPasquale

Overview of Minisymposium

Motivating questions for classical
splines
Freeness of spline modules

Answer in terms of combinatorial, geometric data of $\Delta \subset \mathbb{R}^{n}$:
(1) (Holy grail) Find $\operatorname{dim} S_{d}^{r}(\Delta)$ (equiv. $\operatorname{dim} S^{r}(\widehat{\Delta})_{d}$)
(2) (Holier grail) Find a basis for $S_{d}^{r}(\Delta)$ (equiv. $\left.S^{r}(\widehat{\Delta})_{d}\right)$

- $r=0, \Delta$ simplicial, (1),(2) known for all n (Billera '89)
- $r=0, \Delta$ polyhedral, (1) and (2) unknown even for $n=2,3$ (topic of this talk)
- $r>0, \Delta \subset \mathbb{R}^{2}$ simplicial,
- $\operatorname{dim} S_{d}^{r}(\Delta)$ known for $d \geq 3 r+1$ (Alfeld-Schumaker '93)

Main problems (Numerical analysis)

Algebraic
Methods in
Spline Theory
Michael DiPasquale

Overview of Minisymposium

Motivating questions for classical
splines
Freeness of spline modules

Answer in terms of combinatorial, geometric data of $\Delta \subset \mathbb{R}^{n}$:
(1) (Holy grail) Find $\operatorname{dim} S_{d}^{r}(\Delta)$ (equiv. $\operatorname{dim} S^{r}(\widehat{\Delta})_{d}$)
(2) (Holier grail) Find a basis for $S_{d}^{r}(\Delta)$ (equiv. $\left.S^{r}(\widehat{\Delta})_{d}\right)$

- $r=0, \Delta$ simplicial, (1),(2) known for all n (Billera '89)
- $r=0, \Delta$ polyhedral, (1) and (2) unknown even for $n=2,3$ (topic of this talk)
- $r>0, \Delta \subset \mathbb{R}^{2}$ simplicial,
- $\operatorname{dim} S_{d}^{r}(\Delta)$ known for $d \geq 3 r+1$ (Alfeld-Schumaker '93)
- $\operatorname{dim} S_{d}^{r}(\Delta)$ unknown in general for $r+1 \leq d \leq 3 r$

Main problems (Numerical analysis)

Algebraic
Methods in
Spline Theory
Michael DiPasquale

Overview of Minisymposium

Motivating questions for classical
splines
Freeness of spline modules

Answer in terms of combinatorial, geometric data of $\Delta \subset \mathbb{R}^{n}$:
(1) (Holy grail) Find $\operatorname{dim} S_{d}^{r}(\Delta)$ (equiv. $\operatorname{dim} S^{r}(\widehat{\Delta})_{d}$)
(2) (Holier grail) Find a basis for $S_{d}^{r}(\Delta)$ (equiv. $\left.S^{r}(\widehat{\Delta})_{d}\right)$

- $r=0, \Delta$ simplicial, (1),(2) known for all n (Billera '89)
- $r=0, \Delta$ polyhedral, (1) and (2) unknown even for $n=2,3$ (topic of this talk)
- $r>0, \Delta \subset \mathbb{R}^{2}$ simplicial,
- $\operatorname{dim} S_{d}^{r}(\Delta)$ known for $d \geq 3 r+1$ (Alfeld-Schumaker '93)
- $\operatorname{dim} S_{d}^{r}(\Delta)$ unknown in general for $r+1 \leq d \leq 3 r$
- Conjectured that $\operatorname{dim} S_{d}^{r}(\Delta)$ given by Schumaker's lower bound for $d \geq 2 r+1$ (Schenck '97)

Main problems (Numerical analysis)

Algebraic
Methods in
Spline Theory
Michael DiPasquale

Overview of Minisymposium

Motivating questions for classical splines

Freeness of spline modules

Answer in terms of combinatorial, geometric data of $\Delta \subset \mathbb{R}^{n}$:
(1) (Holy grail) Find $\operatorname{dim} S_{d}^{r}(\Delta)$ (equiv. $\operatorname{dim} S^{r}(\widehat{\Delta})_{d}$)
(2) (Holier grail) Find a basis for $S_{d}^{r}(\Delta)$ (equiv. $\left.S^{r}(\widehat{\Delta})_{d}\right)$

- $r=0, \Delta$ simplicial, (1),(2) known for all n (Billera '89)
- $r=0, \Delta$ polyhedral, (1) and (2) unknown even for $n=2,3$ (topic of this talk)
- $r>0, \Delta \subset \mathbb{R}^{2}$ simplicial,
- $\operatorname{dim} S_{d}^{r}(\Delta)$ known for $d \geq 3 r+1$ (Alfeld-Schumaker '93)
- $\operatorname{dim} S_{d}^{r}(\Delta)$ unknown in general for $r+1 \leq d \leq 3 r$
- Conjectured that $\operatorname{dim} S_{d}^{r}(\Delta)$ given by Schumaker's lower bound for $d \geq 2 r+1$ (Schenck '97)
- Even $\operatorname{dim} S_{3}^{1}(\Delta)$ is unknown! (generically given by Schumaker's lower bound (Billera,Whiteley'88))

Freeness questions (Numerical analysis, topology)

Algebraic
Methods in
Spline Theory
Michael
DiPasquale

Overview of
Minisympo sium

Motivating questions for classical splines

Freeness of spline modules
$S^{r}(\Delta)$ is a free R-module if:
$\exists F_{1}, \ldots, F_{k} \in S^{r}(\Delta)$ so that every $F \in S^{r}(\Delta)$ can be written as $\sum_{i=1}^{k} f_{i} F_{i}$ for a unique choice of polynomials f_{1}, \ldots, f_{k}.

Freeness questions (Numerical analysis, topology)

Algebraic
Methods in
Spline Theory
Michael
DiPasquale

Overview of
Minisymposium

Motivating questions for classical splines

Freeness of spline modules
$S^{r}(\Delta)$ is a free R-module if:
$\exists F_{1}, \ldots, F_{k} \in S^{r}(\Delta)$ so that every $F \in S^{r}(\Delta)$ can be written as $\sum_{i=1}^{k} f_{i} F_{i}$ for a unique choice of polynomials f_{1}, \ldots, f_{k}.
(3) (Less holy grail) Determine whether $S^{r}(\Delta)$ is a free R-module.

Freeness questions (Numerical analysis, topology)

Algebraic
Methods in
Spline Theory
Michael
DiPasquale

Overview of Minisymposium

Motivating questions for classical splines

Freeness of
spline modules
$S^{r}(\Delta)$ is a free R-module if:
$\exists F_{1}, \ldots, F_{k} \in S^{r}(\Delta)$ so that every $F \in S^{r}(\Delta)$ can be written as $\sum_{i=1}^{k} f_{i} F_{i}$ for a unique choice of polynomials f_{1}, \ldots, f_{k}.
(3) (Less holy grail) Determine whether $S^{r}(\Delta)$ is a free R-module.
(4) (Pretty holy grail) Find generators for $S^{r}(\Delta)$ as an R-module (particularly when $S^{r}(\Delta)$ is free).

Freeness questions (Numerical analysis, topology)

Algebraic
Methods in Spline Theory

Michael DiPasquale

Overview of Minisymposium

Motivating questions for classical splines

Freeness of spline modules
$S^{r}(\Delta)$ is a free R-module if:
$\exists F_{1}, \ldots, F_{k} \in S^{r}(\Delta)$ so that every $F \in S^{r}(\Delta)$ can be written as $\sum_{i=1}^{k} f_{i} F_{i}$ for a unique choice of polynomials f_{1}, \ldots, f_{k}.
(3) (Less holy grail) Determine whether $S^{r}(\Delta)$ is a free R-module.
(4) (Pretty holy grail) Find generators for $S^{r}(\Delta)$ as an R-module (particularly when $S^{r}(\Delta)$ is free).

- Schenck ('97): Δ simplicial and $S^{r}(\widehat{\Delta})$ free $\Longrightarrow \operatorname{dim} S_{d}^{r}(\Delta)$ determined by local data

Freeness questions (Numerical analysis, topology)

Algebraic
Methods in Spline Theory

Michael
DiPasquale

Overview of Minisymposium

Motivating questions for classical splines
$S^{r}(\Delta)$ is a free R-module if:
$\exists F_{1}, \ldots, F_{k} \in S^{r}(\Delta)$ so that every $F \in S^{r}(\Delta)$ can be written as $\sum_{i=1}^{k} f_{i} F_{i}$ for a unique choice of polynomials f_{1}, \ldots, f_{k}.
(3) (Less holy grail) Determine whether $S^{r}(\Delta)$ is a free R-module.
(4) (Pretty holy grail) Find generators for $S^{r}(\Delta)$ as an R-module (particularly when $S^{r}(\Delta)$ is free).

- Schenck ('97): Δ simplicial and $S^{r}(\widehat{\Delta})$ free $\Longrightarrow \operatorname{dim} S_{d}^{r}(\Delta)$ determined by local data
- We focus on (3) for $r=0$

Freeness questions (Numerical analysis, topology)

Algebraic
Methods in Spline Theory

Michael DiPasquale

Overview of Minisymposium

Motivating questions for classical splines
$S^{r}(\Delta)$ is a free R-module if:
$\exists F_{1}, \ldots, F_{k} \in S^{r}(\Delta)$ so that every $F \in S^{r}(\Delta)$ can be written as $\sum_{i=1}^{k} f_{i} F_{i}$ for a unique choice of polynomials f_{1}, \ldots, f_{k}.
(3) (Less holy grail) Determine whether $S^{r}(\Delta)$ is a free R-module.
(4) (Pretty holy grail) Find generators for $S^{r}(\Delta)$ as an R-module (particularly when $S^{r}(\Delta)$ is free).

- Schenck ('97): Δ simplicial and $S^{r}(\widehat{\Delta})$ free $\Longrightarrow \operatorname{dim} S_{d}^{r}(\Delta)$ determined by local data
- We focus on (3) for $r=0$
- For (4): analogue of Saito's criterion from arrangement theory identifies when a set of splines forms a free basis for $S^{r}(\Delta)$

C^{0} simplicial splines are (almost) always free

Algebraic
Methods in
Spline Theory
Michael
DiPasquale

Overview of
Minisymposium

Motivating questions for classical
splines
Freeness of spline modules

If $\Delta \subset \mathbb{R}^{n}$ is simplicial then:

C^{0} simplicial splines are (almost) always free

Algebraic
Methods in
Spline Theory
Michael
DiPasquale

Overview of
Minisympo-

sium

Motivating
questions for
classical
splines
Freeness of
spline modules

If $\Delta \subset \mathbb{R}^{n}$ is simplicial then:

- $S^{0}(\widehat{\Delta})$ isomorphic to Stanley-Reisner ring of Δ (Billera '89)

C^{0} simplicial splines are (almost) always free

Algebraic
Methods in
Spline Theory
Michael
DiPasquale

Overview of
Minisymposium

Motivating
questions for classical splines

Freeness of spline modules

If $\Delta \subset \mathbb{R}^{n}$ is simplicial then:

- $S^{0}(\widehat{\Delta})$ isomorphic to Stanley-Reisner ring of Δ (Billera ‘89)
- If $|\Delta|$ is homeomorphic to an n-ball then $S^{0}(\widehat{\Delta})$ is a free R-module.

C^{0} simplicial splines are (almost) always free

Algebraic
Methods in
Spline Theory
Michael
DiPasquale

Overview of Minisymposium

Motivating
questions for classical splines

Freeness of
spline modules

If $\Delta \subset \mathbb{R}^{n}$ is simplicial then:

- $S^{0}(\widehat{\Delta})$ isomorphic to Stanley-Reisner ring of Δ (Billera ‘89)
- If $|\Delta|$ is homeomorphic to an n-ball then $S^{0}(\widehat{\Delta})$ is a free R-module.
- $\operatorname{dim} S_{d}^{0}(\Delta)$ completely determined by combinatorics of Δ

C^{0} non-freeness for polytopal splines

Algebraic
Methods in
Spline Theory
Michael
DiPasquale

Overview of

Minisympo

 siumMotivating questions for classical
splines
Freeness of spline modules

Nonfreeness for Polytopal Complexes [D. '12]
$S^{0}(\widehat{\Delta})$ need not be free if Δ has nonsimplicial faces.

C^{0} non-freeness for polytopal splines

Algebraic
Methods in
Spline Theory
Michael DiPasquale

Nonfreeness for Polytopal Complexes [D. '12]

$S^{0}(\widehat{\Delta})$ need not be free if Δ has nonsimplicial faces.

Overview of Minisymposium

Motivating questions for classical

splines

Freeness of spline modules
$(-2,2)$
$(2,2)$

$(-2,-2)$
(2,-2)
$S^{0}(\widehat{\Delta})$ is a free $\mathbb{R}[x, y, z]$-module

C^{0} non-freeness for polytopal splines

Algebraic
Methods in
Spline Theory
Michael DiPasquale

Overview of Minisymposium

Motivating questions for classical splines

Freeness of spline modules

Nonfreeness for Polytopal Complexes [D. '12]

$S^{0}(\widehat{\Delta})$ need not be free if Δ has nonsimplicial faces.

$S^{0}(\widehat{\Delta})$ is not a free $\mathbb{R}[x, y, z]$-module

C^{0} non-freeness for polytopal splines

Algebraic
Methods in
Spline Theory
Michael DiPasquale

Overview of Minisymposium

Motivating questions for classical splines

Freeness of spline modules

Nonfreeness for Polytopal Complexes [D. '12]

$S^{0}(\widehat{\Delta})$ need not be free if Δ has nonsimplicial faces.

$S^{0}(\widehat{\Delta})$ is a free $\mathbb{R}[x, y, z]$-module

Crosscut Partitions

Algebraic
Methods in
Spline Theory
Michael
DiPasquale

Overview of
Minisymposium

Motivating questions for classical
splines
Freeness of spline modules

A partition of a planar domain D is called a crosscut partition if the union of its two-cells are the complement of a line arrangement.

Crosscut Partitions

Algebraic
Methods in
Spline Theory
Michael
DiPasquale

Overview of
Minisymposium

Motivating questions for classical splines

Freeness of spline modules

A partition of a planar domain D is called a crosscut partition if the union of its two-cells are the complement of a line arrangement.

Crosscut Partitions

Algebraic
Methods in
Spline Theory
Michael
DiPasquale

Overview of Minisymposium

Motivating questions for classical

splines

Freeness of
spline modules

A partition of a planar domain D is called a crosscut partition if the union of its two-cells are the complement of a line arrangement.

- Basis for $S_{d}^{r}(\Delta)$ and $\operatorname{dim} S_{d}^{r}(\Delta)$ (Chui-Wang '83): uniform constructions based on combinatorial data

Crosscut Partitions

Algebraic
Methods in
Spline Theory
Michael
DiPasquale

Overview of Minisymposium

Motivating
questions for classical
splines
Freeness of
spline modules

A partition of a planar domain D is called a crosscut partition if the union of its two-cells are the complement of a line arrangement.

- Basis for $S_{d}^{r}(\Delta)$ and $\operatorname{dim} S_{d}^{r}(\Delta)$ (Chui-Wang '83): uniform constructions based on combinatorial data
- $S^{r}(\widehat{\Delta})$ is also free for any r (Schenck '97)

Crosscut Partitions

Algebraic
Methods in
Spline Theory
Michael
DiPasquale

Overview of Minisymposium

Motivating questions for classical splines

Freeness of

A partition of a planar domain D is called a crosscut partition if the union of its two-cells are the complement of a line arrangement.

- Basis for $S_{d}^{r}(\Delta)$ and $\operatorname{dim} S_{d}^{r}(\Delta)$ (Chui-Wang '83): uniform constructions based on combinatorial data
- $S^{r}(\widehat{\Delta})$ is also free for any r (Schenck '97)
- Extends to so-called quasi-crosscut partitions

Three dimensional crosscut partitions?

Algebraic
Methods in
Spline Theory
Michael
DiPasquale

Overview of
Minisympo-

sium

Motivating
questions for
classical
splines
Freeness of spline modules
H_{1}, \ldots, H_{k} linear subspaces of \mathbb{R}^{3}
$\mathcal{A}=\bigcup_{i=1}^{k} H_{i}$
\mathcal{A} is a central hyperplane arrangement

Three dimensional crosscut partitions?

Algebraic
Methods in
Spline Theory
Michael
DiPasquale

Overview of
Minisympo sium

Motivating
questions for
classical
splines
Freeness of
spline modules
H_{1}, \ldots, H_{k} linear subspaces of \mathbb{R}^{3}
$\mathcal{A}=\bigcup_{i=1}^{k} H_{i}$
\mathcal{A} is a central hyperplane arrangement
$\Delta_{\mathcal{A}}=$ polyhedral complex whose maximal polytopes are closures of connected components of $\mathbb{R}^{3} \backslash \mathcal{A}$ (chambers of \mathcal{A})

Three dimensional crosscut partitions?

Algebraic
Methods in
Spline Theory
Michael
DiPasquale

Overview of
Minisymposium

Motivating
questions for
classical
splines
Freeness of
spline modules
H_{1}, \ldots, H_{k} linear subspaces of \mathbb{R}^{3}
$\mathcal{A}=\bigcup_{i=1}^{k} H_{i}$
\mathcal{A} is a central hyperplane arrangement
$\Delta_{\mathcal{A}}=$ polyhedral complex whose maximal polytopes are closures of connected components of $\mathbb{R}^{3} \backslash \mathcal{A}$ (chambers of \mathcal{A})

Question

Is $\operatorname{dim} S^{0}\left(\Delta_{\mathcal{A}}\right)_{d}$ (or freeness of $S^{0}\left(\Delta_{\mathcal{A}}\right)$) combinatorial?

Three dimensional crosscut partitions?

Algebraic
Methods in
Spline Theory
Michael
DiPasquale

Overview of Minisymposium

Motivating
questions for
classical
splines
Freeness of
spline modules
H_{1}, \ldots, H_{k} linear subspaces of \mathbb{R}^{3}
$\mathcal{A}=\bigcup_{i=1}^{k} H_{i}$
\mathcal{A} is a central hyperplane arrangement
$\Delta_{\mathcal{A}}=$ polyhedral complex whose maximal polytopes are closures of connected components of $\mathbb{R}^{3} \backslash \mathcal{A}$ (chambers of \mathcal{A})

Question

Is $\operatorname{dim} S^{0}\left(\Delta_{\mathcal{A}}\right)_{d}$ (or freeness of $S^{0}\left(\Delta_{\mathcal{A}}\right)$) combinatorial?
Answer: In general, no.

Example: Ziegler's pair

Algebraic
Methods in
Spline Theory
Michael
DiPasquale

Overview of
Minisympo-

sium

Motivating
questions for
classical
splines
Freeness of spline modules
$\mathcal{A}_{t}=$ union of hyperplanes defined by the vanishing of the forms (t is considered a parameter):

$$
\begin{array}{lll}
x & x+y+z & 2 x+y+z \\
y & 2 x+3 y+z & 2 x+3 y+4 z \\
z & (1+t) x+(3+t) z & (1+t) x+(2+t) y+(3+t) z
\end{array}
$$

Write Δ_{t} for $\Delta_{\mathcal{A}_{t}}$.

Example: Ziegler's pair

Algebraic
Methods in
Spline Theory
Michael
DiPasquale

Overview of
Minisympo-

sium

Motivating
questions for classical

Freeness of spline modules
$\mathcal{A}_{t}=$ union of hyperplanes defined by the vanishing of the forms (t is considered a parameter):

$$
\begin{array}{lll}
x & x+y+z & 2 x+y+z \\
y & 2 x+3 y+z & 2 x+3 y+4 z \\
z & (1+t) x+(3+t) z & (1+t) x+(2+t) y+(3+t) z
\end{array}
$$

Write Δ_{t} for $\Delta_{\mathcal{A}_{t}}$.

- Combinatorics of Δ_{t} is constant for t close to 0

Example: Ziegler's pair

Algebraic
Methods in
Spline Theory
Michael
DiPasquale

Overview of
Minisympo-

sium

Motivating
questions for classical

Freeness of spline modules
$\mathcal{A}_{t}=$ union of hyperplanes defined by the vanishing of the forms (t is considered a parameter):

$$
\begin{array}{lll}
x & x+y+z & 2 x+y+z \\
y & 2 x+3 y+z & 2 x+3 y+4 z \\
z & (1+t) x+(3+t) z & (1+t) x+(2+t) y+(3+t) z
\end{array}
$$

Write Δ_{t} for $\Delta_{\mathcal{A}_{t}}$.

- Combinatorics of Δ_{t} is constant for t close to 0
- $S^{0}\left(\Delta_{0}\right)$ is not free

Example: Ziegler's pair

$\mathcal{A}_{t}=$ union of hyperplanes defined by the vanishing of the forms (t is considered a parameter):

$$
\begin{array}{lll}
x & x+y+z & 2 x+y+z \\
y & 2 x+3 y+z & 2 x+3 y+4 z \\
z & (1+t) x+(3+t) z & (1+t) x+(2+t) y+(3+t) z
\end{array}
$$

Write Δ_{t} for $\Delta_{\mathcal{A}_{t}}$.

- Combinatorics of Δ_{t} is constant for t close to 0
- $S^{0}\left(\Delta_{0}\right)$ is not free
- $S^{0}\left(\Delta_{t}\right)$ is free for $t \neq 0$ near zero

Example: Ziegler's pair

$\mathcal{A}_{t}=$ union of hyperplanes defined by the vanishing of the forms (t is considered a parameter):

$$
\begin{array}{lll}
x & x+y+z & 2 x+y+z \\
y & 2 x+3 y+z & 2 x+3 y+4 z \\
z & (1+t) x+(3+t) z & (1+t) x+(2+t) y+(3+t) z
\end{array}
$$

Write Δ_{t} for $\Delta_{\mathcal{A}_{t}}$.

- Combinatorics of Δ_{t} is constant for t close to 0
- $S^{0}\left(\Delta_{0}\right)$ is not free
- $S^{0}\left(\Delta_{t}\right)$ is free for $t \neq 0$ near zero
- $\operatorname{dim} S^{0}\left(\Delta_{0}\right)_{1}=\operatorname{dim} S^{0}\left(\Delta_{t}\right)_{1}+1$ for $t \neq 0$ near zero

Formal arrangements and C^{0} splines

Algebraic
Methods in
Spline Theory
Michael
DiPasquale

Overview of
Minisympo-
sium
Motivating
questions for
classical
splines
Freeness of spline modules
$\mathcal{A}=\cup_{i=1}^{k} H_{i}$, where H_{i} is vanishing of linear form ℓ_{i}.

Formal arrangements and C^{0} splines

Algebraic
Methods in
Spline Theory
Michael
DiPasquale

Overview of
Minisympo sium

Motivating questions for classical
splines
Freeness of
spline modules
$\mathcal{A}=\cup_{i=1}^{k} H_{i}$, where H_{i} is vanishing of linear form ℓ_{i}.
\mathcal{A} is formal if:
Every dependency among the linear forms $\ell_{1}, \ldots, \ell_{k}$ is a linear combination of dependencies among three linear forms.

Formal arrangements and C^{0} splines

Algebraic
Methods in
Spline Theory
Michael
DiPasquale

Overview of
Minisymposium

Motivating
questions for classical splines

Freeness of
spline modules
$\mathcal{A}=\cup_{i=1}^{k} H_{i}$, where H_{i} is vanishing of linear form ℓ_{i}.

\mathcal{A} is formal if:

Every dependency among the linear forms $\ell_{1}, \ldots, \ell_{k}$ is a linear combination of dependencies among three linear forms.

- $x, y, z, x-y, x-z, y-z$ yields a formal arrangement
- $x, y, z, x+y+z$ yields a non-formal arrangement

Formal arrangements and C^{0} splines

Algebraic
Methods in
Spline Theory
Michael
DiPasquale

Overview of Minisymposium

Motivating
questions for
classical splines

Freeness of spline modules
$\mathcal{A}=\cup_{i=1}^{k} H_{i}$, where H_{i} is vanishing of linear form ℓ_{i}.

\mathcal{A} is formal if:

Every dependency among the linear forms $\ell_{1}, \ldots, \ell_{k}$ is a linear combination of dependencies among three linear forms.

- $x, y, z, x-y, x-z, y-z$ yields a formal arrangement
- $x, y, z, x+y+z$ yields a non-formal arrangement

Theorem [D.'17]

If $\mathcal{A} \subset \mathbb{R}^{3}$, then $S^{0}\left(\Delta_{\mathcal{A}}\right)$ is free if and only if \mathcal{A} is formal.

Formal arrangements and C^{0} splines

Algebraic
Methods in Spline Theory

Michael
DiPasquale

Overview of Minisymposium

Motivating questions for classical splines
$\mathcal{A}=\cup_{i=1}^{k} H_{i}$, where H_{i} is vanishing of linear form ℓ_{i}.

\mathcal{A} is formal if:

Every dependency among the linear forms $\ell_{1}, \ldots, \ell_{k}$ is a linear combination of dependencies among three linear forms.

- $x, y, z, x-y, x-z, y-z$ yields a formal arrangement
- $x, y, z, x+y+z$ yields a non-formal arrangement

Theorem [D.'17]

If $\mathcal{A} \subset \mathbb{R}^{3}$, then $S^{0}\left(\Delta_{\mathcal{A}}\right)$ is free if and only if \mathcal{A} is formal.

- Proof uses Billera-Schenck-Stillman chain complex, freeness criterion due to Schenck ('97).

Formal arrangements and C^{0} splines

Algebraic
Methods in Spline Theory

Michael DiPasquale

Overview of Minisymposium

Motivating questions for classical splines
$\mathcal{A}=\cup_{i=1}^{k} H_{i}$, where H_{i} is vanishing of linear form ℓ_{i}.

\mathcal{A} is formal if:

Every dependency among the linear forms $\ell_{1}, \ldots, \ell_{k}$ is a linear combination of dependencies among three linear forms.

- $x, y, z, x-y, x-z, y-z$ yields a formal arrangement
- $x, y, z, x+y+z$ yields a non-formal arrangement

Theorem [D.'17]

If $\mathcal{A} \subset \mathbb{R}^{3}$, then $S^{0}\left(\Delta_{\mathcal{A}}\right)$ is free if and only if \mathcal{A} is formal.

- Proof uses Billera-Schenck-Stillman chain complex, freeness criterion due to Schenck ('97).
- Theorem generalizes to any central $\Delta \subset \mathbb{R}^{3}$, but statement is more complicated

Formal arrangements and C^{0} splines

Algebraic
Methods in Spline Theory

Michael DiPasquale

Overview of Minisymposium

Motivating questions for classical splines
$\mathcal{A}=\cup_{i=1}^{k} H_{i}$, where H_{i} is vanishing of linear form ℓ_{i}.

\mathcal{A} is formal if:

Every dependency among the linear forms $\ell_{1}, \ldots, \ell_{k}$ is a linear combination of dependencies among three linear forms.

- $x, y, z, x-y, x-z, y-z$ yields a formal arrangement
- $x, y, z, x+y+z$ yields a non-formal arrangement

Theorem [D.'17]

If $\mathcal{A} \subset \mathbb{R}^{3}$, then $S^{0}\left(\Delta_{\mathcal{A}}\right)$ is free if and only if \mathcal{A} is formal.

- Proof uses Billera-Schenck-Stillman chain complex, freeness criterion due to Schenck ('97).
- Theorem generalizes to any central $\Delta \subset \mathbb{R}^{3}$, but statement is more complicated
- \mathcal{A}_{t} is formal except when $t=0$ (Yuzvinsky '93)

Algebraic
Methods in
Spline Theory
Michael
DiPasquale

Overview of Minisymposium

Motivating questions for classical
splines
Freeness of spline modules

THANK YOU!

