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Splines, generally speaking

A spline is

A piecewise function
Together with ‘gluing data’ describing how the functions
fit together

Classically, splines are C r piecewise polynomial functions
defined over tetrahedral or polytopal subdivisions in Rn

(Myself, Tatyana Sorokina, Nelly Villamizar; numerical
analysis)
However, non-polynomial functions may be used (Cesare
Bracco; numerical analysis)
Or the cells of the subdivision could be semi-algebraic sets,
defined by arbitrary polynomial inequalities (Peter Stiller,
Frank Sottile; numerical analysis and algebraic geometry)
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Or the polynomials could glue via geometric continuity to
form splines on arbitrary topological spaces (Bernard
Mourrain, Katharina Birner; isogeometric analysis,
geometric design)

Dually, the domains could be considered as vertices of a
graph (even infinite!) with algebraic gluing condition
across edges (Julianna Tymoczko; equivariant
cohomology)
Other work related to splines in this mini: Algebraic
geometry and commutative algebra, with applications to
interpolation problems (Stefan Tohaneanu, Boris
Shekhtman)
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Underlying space for a spline function

Work over a subdivision ∆ ⊂ Rn which is:

A polytopal complex
Pure n-dimensional
A pseudomanifold

A polytopal complex
Notation:

∆i : faces of dimension i (i-faces)
∆◦i : interior i-faces
If τ ∈ ∆n−1, `τ = linear form cutting out affine span of τ
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Splines (classical definition, algebraically speaking)

C r spline on ∆: collection F = (Fσ) of polynomials
Fσ ∈ R = R[x1, . . . , xn], for every σ ∈ ∆n, so that if
σ ∩ σ′ = τ ∈ ∆n−1 then (`τ )r+1|(Fσ − Fσ′).

Sr (∆): R-module of all C r splines on ∆
Sr

d (∆): v.s. of F ∈ Sr (∆) with deg(Fσ) ≤ d for all σ ∈ ∆n

Sr (∆)d : v.s. of F ∈ Sr (∆) with deg(Fσ) = d for all σ ∈ ∆n.
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Coning Construction

∆̂ ⊂ Rn+1 denotes cone over ∆ ⊂ Rn.

∆ ∆̂

`τ̂ is the homogenization of `τ for τ ∈ ∆n−1

Sr
d (∆) ∼= Sr (∆̂)d (as v.s.)

Sr (∆̂) =
⊕

d≥0 Sr (∆̂)d is a graded R-module
Call ∆ central if 0 ∈ σ for every σ ∈ ∆n
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Main problems (Numerical analysis)

Answer in terms of combinatorial, geometric data of ∆ ⊂ Rn:

(1) (Holy grail) Find dimSr
d (∆) (equiv. dim Sr (∆̂)d)

(2) (Holier grail) Find a basis for Sr
d (∆) (equiv. Sr (∆̂)d)

r = 0, ∆ simplicial, (1),(2) known for all n (Billera ’89)
r = 0, ∆ polyhedral, (1) and (2) unknown even for
n = 2, 3 (topic of this talk)
r > 0, ∆ ⊂ R2 simplicial,

dimS r
d (∆) known for d ≥ 3r + 1 (Alfeld-Schumaker ’93)

dimS r
d (∆) unknown in general for r + 1 ≤ d ≤ 3r

Conjectured that dim S r
d (∆) given by Schumaker’s lower

bound for d ≥ 2r + 1 (Schenck ’97)
Even dim S1

3 (∆) is unknown! (generically given by
Schumaker’s lower bound (Billera,Whiteley’88))
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3 (∆) is unknown! (generically given by

Schumaker’s lower bound (Billera,Whiteley’88))
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Main problems (Numerical analysis)

Answer in terms of combinatorial, geometric data of ∆ ⊂ Rn:
(1) (Holy grail) Find dimSr

d (∆) (equiv. dim Sr (∆̂)d)
(2) (Holier grail) Find a basis for Sr

d (∆) (equiv. Sr (∆̂)d)

r = 0, ∆ simplicial, (1),(2) known for all n (Billera ’89)
r = 0, ∆ polyhedral, (1) and (2) unknown even for
n = 2, 3 (topic of this talk)
r > 0, ∆ ⊂ R2 simplicial,

dimS r
d (∆) known for d ≥ 3r + 1 (Alfeld-Schumaker ’93)

dimS r
d (∆) unknown in general for r + 1 ≤ d ≤ 3r

Conjectured that dim S r
d (∆) given by Schumaker’s lower

bound for d ≥ 2r + 1 (Schenck ’97)
Even dim S1

3 (∆) is unknown! (generically given by
Schumaker’s lower bound (Billera,Whiteley’88))
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Freeness questions (Numerical analysis, topology)

Sr (∆) is a free R-module if:
∃F1, . . . ,Fk ∈ Sr (∆) so that every F ∈ Sr (∆) can be written
as

∑k
i=1 fiFi for a unique choice of polynomials f1, . . . , fk .

(3) (Less holy grail) Determine whether Sr (∆) is a free
R-module.

(4) (Pretty holy grail) Find generators for Sr (∆) as an
R-module (particularly when Sr (∆) is free).

Schenck (’97): ∆ simplicial and Sr (∆̂) free
=⇒ dimSr

d (∆) determined by local data
We focus on (3) for r = 0
For (4): analogue of Saito’s criterion from arrangement
theory identifies when a set of splines forms a free basis for
Sr (∆)
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C 0 simplicial splines are (almost) always free

If ∆ ⊂ Rn is simplicial then:

S0(∆̂) isomorphic to Stanley-Reisner ring of ∆ (Billera
‘89)
If |∆| is homeomorphic to an n-ball then S0(∆̂) is a free
R-module.
dim S0

d (∆) completely determined by combinatorics of ∆
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C 0 non-freeness for polytopal splines

Nonfreeness for Polytopal Complexes [D. ‘12]

S0(∆̂) need not be free if ∆ has nonsimplicial faces.
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C 0 non-freeness for polytopal splines

Nonfreeness for Polytopal Complexes [D. ‘12]

S0(∆̂) need not be free if ∆ has nonsimplicial faces.

(1,−1)

(1, 1)

(−1,−1)

(−1, 1)

(2,−2)

(2, 2)

(−2,−2)

(−2, 2)

S0(∆̂) is a free R[x , y , z ]-module
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C 0 non-freeness for polytopal splines

Nonfreeness for Polytopal Complexes [D. ‘12]

S0(∆̂) need not be free if ∆ has nonsimplicial faces.

(1,−1)

(1, 1)

(−1,−1)

(−1, 1)

(2,−2)

(2, 3)

(−2,−2)

(−2, 3)

S0(∆̂) is not a free R[x , y , z ]-module
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Crosscut Partitions

A partition of a planar domain D is called a crosscut partition if
the union of its two-cells are the complement of a line
arrangement.

Basis for Sr
d (∆) and dim Sr

d (∆) (Chui-Wang ‘83): uniform
constructions based on combinatorial data
Sr (∆̂) is also free for any r (Schenck ‘97)
Extends to so-called quasi-crosscut partitions
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Three dimensional crosscut partitions?

H1, . . . ,Hk linear subspaces of R3

A =
⋃k

i=1 Hi

A is a central hyperplane arrangement

∆A = polyhedral complex whose maximal polytopes are
closures of connected components of R3 \ A (chambers of A)

Question
Is dim S0(∆A)d (or freeness of S0(∆A)) combinatorial?

Answer: In general, no.
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Example: Ziegler’s pair

At = union of hyperplanes defined by the vanishing of the
forms (t is considered a parameter):

x x+y+z 2x+y+z
y 2x+3y+z 2x+3y+4z
z (1+t)x+(3+t)z (1+t)x+(2+t)y+(3+t)z

Write ∆t for ∆At .

Combinatorics of ∆t is constant for t close to 0
S0(∆0) is not free
S0(∆t) is free for t 6= 0 near zero
dim S0(∆0)1 = dim S0(∆t)1 + 1 for t 6= 0 near zero
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Formal arrangements and C 0 splines

A = ∪k
i=1Hi , where Hi is vanishing of linear form `i .

A is formal if:
Every dependency among the linear forms `1, . . . , `k is a linear
combination of dependencies among three linear forms.

x , y , z , x − y , x − z , y − z yields a formal arrangement
x , y , z , x + y + z yields a non-formal arrangement

Theorem [D.’17]
If A ⊂ R3, then S0(∆A) is free if and only if A is formal.

Proof uses Billera-Schenck-Stillman chain complex,
freeness criterion due to Schenck (’97).
Theorem generalizes to any central ∆ ⊂ R3, but
statement is more complicated
At is formal except when t = 0 (Yuzvinsky ’93)
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Formal arrangements and C 0 splines

A = ∪k
i=1Hi , where Hi is vanishing of linear form `i .

A is formal if:
Every dependency among the linear forms `1, . . . , `k is a linear
combination of dependencies among three linear forms.

x , y , z , x − y , x − z , y − z yields a formal arrangement
x , y , z , x + y + z yields a non-formal arrangement

Theorem [D.’17]
If A ⊂ R3, then S0(∆A) is free if and only if A is formal.

Proof uses Billera-Schenck-Stillman chain complex,
freeness criterion due to Schenck (’97).
Theorem generalizes to any central ∆ ⊂ R3, but
statement is more complicated
At is formal except when t = 0 (Yuzvinsky ’93)
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THANK YOU!
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