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Courant hat function

Courant (1888-1972)
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Bézier curves

Bézier (1910-1999) De Casteljau (1930-2022)

Bernstein–Bézier methods



Spline functions (definition)

Splines are piecewise polynomial functions with a specified order of
smoothness on polyhedral partitions in Rn.

Ex: A spline function on [a, c] ∪ [c, b] is any function of the form

f(x) =

f1(x) if x ∈ [a, c]

f2(x) if x ∈ [c, b]; for f1(x), f2(x) ∈ R[x].

Taking a = 0, c = 2 and b = 4 then

f(x) =

x if x ∈ [0, 2]

−x2 + 5x− 4 if x ∈ [2, 4]
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Univariate splines

Prop: The spline f = (f1, f2) defines a Cr-continuous function on [a, b] ⇔
the polynomial f1 − f2 is divisible by (x− c)r+1:

f1 − f2 ∈ ⟨(x− c)r+1⟩ ⊆ R[x].

• The Cr-continuous splines Sr([a, b]) is a vector subspace of R[x]2.

• If deg fi ≤ d then Srd([a, b]) is a finite-dimensional vector space.

For any (f1, f2) ∈ Sr([a, b]), we can write (f1, f2) = (f1, f1) + (0, f2 − f1).

• Basis:
{
(1, 1), (x, x), . . . , (xd, xd), (0, (x− c)r+1), . . . , (0, (x− c)d)

}
.



Dimension of splines on triangulations

• Strang’s conjecture (1974): the dimension of a spline space over a
triangulation is given by a combinatorial formula.

• Morgan and Scott (1975) proved a dimension formula for polynomial
degree d ≥ 5 and smoothness r = 1 . Strang’s conjecture is not valid for
arbitrary triangulations.
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Dimension of splines on triangulations

• Strang’s conjecture (1974): the dimension of a spline space over a
triangulation is given by a combinatorial formula.

• Morgan and Scott (1975) proved a dimension formula for polynomial
degree d ≥ 5 and smoothness r = 1 . Strang’s conjecture is not valid for
arbitrary triangulations.

• Schumaker (1984) proved combinatorial lower and upper bounds for

splines on arbitrary triangulations
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For this numbering, the lower bound formula gives dimS12 (∆) ≥ 9.



Bounds on the dimension of splines on triangulations

We have f0
2 = 14 triangles, f0

1 = 18 edges, and f0
0 = 5 vertices.
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The upper bound for this numbering gives dimS12 (∆) ≤ 11.
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For this numbering we get dimS12 (∆) ≤ 9, which implies dimS12 (∆) = 9.



Dimension of splines on triangulations: state of the art

• Strang’s conjecture (1974): combinatorial formula.

• Morgan and Scott (1975) proved a dimension formula for polynomial
degree d ≥ 5: Strang’s conjecture is not valid for arbitrary triangulations.

• Schumaker (1984) proved combinatorial lower and upper bounds for
splines on arbitrary triangulations

• Alfeld (1987) proved dimension formula for d ≥ 4r + 1. The results were
extended to d ≥ 3r + 2 by Hong (1991).

• Billera (1988) introduced the use of homological algebra in the study of
splines and poved Strang’s conjecture for generic triangulations S1d(∆).

• Stillman and Yuan (2019) counter-example to the Schenck–Stiller 2r + 1

conjecture. The conjecture is still open for S1
3(∆).

• Schenck, Stillman, and Yuan (2020): combinatorial formula does not hold

in general for d ≤ 22r+7
10 .



Multivariate splines

Splines Sr(∆) are piecewise polynomial functions of smoothness r on a
given polyhedral complex ∆ embedded in Rn.

A polyhedral complex ∆ ⊂ Rn is a finite collection of polytopes such that

• the faces of each polytope in ∆

is also in ∆,
• the intersection of any two polytopes in ∆

is also in ∆.

Pure: Every maximal element of ∆ is an
n-dimensional polyhedron.

Hereditary: For any n-dimensional faces
σ, σ′ ∈ ∆n such that τ ∈ σ ∩ σ′ there are

σ = σ1, σ2, . . . , σm = σ′ ∈ ∆n

s.t. τ ∈ σi, and σi and σi+1 are adjacent.



Multivariate splines

Let ∆ ⊂ Rn be a pure, hereditary n-dimensional polyhedral complex, and
r, d ≥ 0 be integers.
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The space of splines on ∆ is defined as

Sr(∆) =
{
f ∈ Cr(∆): f |σ ∈ R[x1, . . . , xn] for all σ ∈ ∆n

}
Srd(∆) =

{
f ∈ Sr(∆): deg(f |σ) ≤ d for all σ ∈ ∆n

}
.

• The set Srd(∆) is a real vector space.



Smoothness condition

Algebraically, if σ, σ′ ∈ ∆n and σ ∩ σ′ = τ ∈ ∆n−1 then

f ∈ Sr(∆) ⇔ f |σ − f |σ′ ∈
〈
ℓr+1
τ

〉
where ℓτ is a linear polynomial vanishing on τ .



Splines as graded modules

If we embed ∆ in {xn+1 = 1} ⊆ Rn+1, we can consider the splines Sr(∆̂) on
the new polyhedral complex ∆̂.

• Given f = (f1, . . . , fm) ∈ Srd(∆), the homogenization

fh = (fh
1 , . . . , f

h
m) ∈ Srd(∆̂).

• Sr(∆̂) =
⊕
d≥0

Sr(∆̂)d is a graded module, and dimSrd(∆) = dimSr(∆̂)d

• Then, to study the dimension of Srd(∆), it suffices to study the Hilbert
series of the module Sr(∆̂).



Simplicial complex

Let ∆ be a simplicial complex, to a simplex associate an orientation:

σ

τ ′ τ

τ ′′
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v1 v3

v2 [σ] = [v1, v2, v3]

[τ ] = [v2, v3]

[τ ′] = [v1, v2]

Given ∆ and a ring R, the R-module Ci is generated by the oriented
i-simplices:

[vj0 , . . . , vji ] = (−1)sgn(ρ)[vjρ(0), . . . , vjρ(i)] permutation ρ

A simplicial complex gives rise to a chain complex: the boundary map

∂([σ]) =
∑n

j=0(−1)j [vi0 , . . . , v̂ij , . . . , vin ] ∂∂ = 0

Ex: ∂([v1, v2, v3]) = [v2, v3]− [v1, v3] + [v1, v2]

We extend ∂ by linearity Ci
∂i−→ Ci−1 Im(∂i+1) ⊆ ker(∂i)

C : 0→ Cn
∂n−→ Cn−1

∂n−1−−−→ · · · ∂1−→ C0 → 0

Homology modules: Hi(C) = ker(∂i)/ Im(∂i+1).



Relative homology with respect the boundary

Given a subspace A of X we can consider Ci(X,A) = Ci(X)/Ci(A):

0→ Cn(X,A)
∂n−→ Cn−1(X,A)

∂n−1−−−→ · · · ∂1−→ C0(X,A)→ 0

For a simplicial complex ∆, we consider the relative homology of ∆ with
respect to the boundary ∂(∆), and the ring R = R[x0, . . . , xn].
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Ex: 0→ R[x, y]4 → R[x, y]4 → R[x, y]→ 0

In general, to a simplicial complex ∆ associate

R : 0→ Rn → Rn−1 → · · · → R0 → 0

where Ri =
⊕

δ∈∆0
i
R(δ), with R(δ) = R.

The set of interior i-dimensional faces of ∆ is ∆0
i .



Dimension formula for the spline space

For R = R[x0, . . . , xn] and r ≥ 0, define the complex of ideals J on the
simplicial complex ∆:

J (σ) = ⟨0⟩ for σ ∈ ∆n

J (τ) = ⟨ℓr+1
τ ⟩ for τ ∈ ∆0

n−1

...

J (γ) =
∑
τ∋γ

⟨ℓr+1
τ ⟩ for γ ∈ ∆0

0

Define the quotient complex by R/J (δ) = R(δ)/J (δ):

R/J : 0 −→
⊕
σ∈∆n

R(σ) ∂n−→
⊕

τ∈∆0
n−1

R/J (τ) ∂n−1−−−→ · · · ∂1−→
⊕
γ∈∆0

0

R/J (γ) −→ 0

We have: dimSrd(∆) = dimHn(R/J )d.



Dimension formula for the spline space

The short exact sequence of complexes 0→ J → R→ R/J → 0

0 0

⊕
τ∈∆0

n−1

J (τ)
⊕

γ∈∆0
0

J (γ)

0
⊕

σ∈∆n

R(σ)
⊕

τ∈∆0
n−1

R(τ) . . .
⊕

γ∈∆0
0

R(γ)
0

0

0
⊕

σ∈∆n

R(σ)
⊕

τ∈∆0
n−1

R/J (τ) . . .
⊕

γ∈∆0
0

R(γ)
0

0 0 0

0 0 0

. . .

gives rise to a long exact sequence of homology modules:

· · · → Hi+1(R/J )→ Hi(J )→ Hi(R)→ Hi(R/J )→ Hi−1(J )→ · · ·

For ∆ a pure and hereditary simplicial complex:

• Hi(R) = 0 except for Hn(R) = R, • H0(R/J ) = 0,

• Hi(R/J ) ∼= Hi−1(J ) for i ≤ n− 1, • Sr(∆̂) ∼= R⊕H1(J ).



Dimension of spline spaces on triangulations

dimSrd(∆) =
∑

σ∈∆2

dimR(σ)d −
∑

τ∈∆0
1

dimR/J (τ)d +
∑

γ∈∆0
0

dimR/J (γ)d + dimH0(J )d

We know: ∑
σ∈∆2

dimR(σ)d = f2

(
d+ 2

2

)
(f0

i is the number interior i-faces)

∑
τ∈∆0

1

dimR/J (τ)d = f0
1

[(
d+ 2

2

)
−
(
d+ 2− (r + 1)

2

)]

For computing dimR/J (γ)d we use the resolution

0→ R(−Ωi − 1)ai ⊕R(−Ωi)
bi → ⊕ti

j=1R(−r − 1)→ R→ R/J (γi)→ 0

where ti as the number of different slopes of the edges containing γi and

Ω =

⌊
t r

t− 1

⌋
+ 1, a = t (r + 1) + (1− t) Ω, b = t− 1− a.



Dimension of trivariate spline spaces

Given a 3-dim simplicial complex ∆, take R = R[x, y, z]:

0→
⊕
ι∈∆3

R(ι) ∂3−→
⊕
σ∈∆0

2

R/J (σ) ∂2−→
⊕
τ∈∆0

1

R/J (τ) ∂1−→
⊕
γ∈∆0

0

R/J (γ)→ 0

• Then dimSrd(∆) =
∑

ι∈∆3

dimR(ι)d −
∑

σ∈∆0
2

dimR/J (σ)d+
∑

τ∈∆0
1

dimR/J (τ)d

− dimR/J(γ)d + dimH1(J )d − dimH0(J )d .

To compute dim J(γ)d we consider the dual points in P2:

ℓi = a1 x+a2 y+a3 z ←→←→←→ Pi = [a1 : a2 : a3] ∈ P2

Ex: P1 = [1 : 0 : 0], P2 = [0 : 1 : 0], P3 = [0 : 0 : 1].



Ideals of fat points

If P = [a0 : a1 : · · · : an] ∈ Pn, we can consider the ideal

℘ = ⟨L1, . . . , Ln⟩ where Lj(P ) = 0

for independent linear forms Lj .

For a collection of points Pi and a collection of positive integers αi

I = ℘α1
1 ∩ · · · ∩℘αt

t is called an ideal of fat points. Via apolarity:

dimR/⟨ℓr+1
1 , . . . , ℓr+1

t ⟩d = dimRd − dim
(
Id−r

)
d

• The expected dimension is E(t, r + 1, 3)d =

[(
d+2
2

)
− t

(
d−r+1

2

)]
+

In fact, dim(R/⟨ℓr+1
1 , . . . , ℓr+1

t ⟩)d ≥ F (t, r + 1, 3)d ≥ E(t, r + 1, 3)d.

• F (t, r + 1, n)i was conjectured by Fröberg (1985) for generic forms.

– This formula is used to find bounds on the dimension of trivariate splines.

In P2 this conjecture became Segre-Harbourne-Gimigliano- Hirschowitz’s conjecture
(2001); Laface and Ugaglia in P3; Dumitrescu, Brambilla, and Postighel in Pn.



Dual graphs

Ex: Regular octahedron

• Then 12 two-dimensional faces lie in
the planes ℓ1 = x, ℓ2 = y and ℓ3 = z.

• The dual points are
P1 = (1, 0, 0), P2 = (0, 1, 0), P3 = (0, 0, 1)

• Each interior edge τ lie in the intersection of 2 of these planes⇒ the

corresponding 2 dual points lie on a line Lτ .
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Ex: Generic octahedron
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Combinatorial bounds on a fat point scheme

Thm (Cooper, Harbourne, and Teitler – 2011): Given a reduction vector

d = (d1, . . . , dn) they provide lower and upper bounds on the dimension of

the fat points subscheme in P2.

Thm (Whiteley): For generic vertex stars Sr(∆)d =
(
d+2
2

)
if d ≤ 3r+1

2 .

Prop: For a vertex stars J (γ)d = Rd for d > α̂(IX)r
α̂(IX)−1 , where

α̂(I) = lim
s→∞

α(I(s))
s is the Waldschmidt constant.

bγ′

b

b

b

b

b b

b

b
b

b

b

b b

b

b

b

b

b

b b

b

b
b

b

b

b

b b b

b

b
b

b

b
bb

A lower bound on the dimension of splines on tetrahedral vertex stars, SIAGA, 2021, & of
tetrahedral splines in large degree, Constr Approx, 2024.

https://doi.org/10.1137/20M1341118
https://link.springer.com/article/10.1007/s00365-023-09625-5


Some open questions

• Conjecture (splines on triangulations): dimS13 (∆) = 3VB + 2VI + σ + 1.

• Superspline spaces: Srd (∆) –splines with mixed smoothness properties.

For example, if τ = [γ, γ′] ∈ ∆◦
1, then J (τ) =

〈
ℓrτ+1
τ

〉
∩m

sγ+1
γ ∩m

sγ′+1

γ′ .

When is Sr(∆) a free module?

• Geometrically continuous splines: G1
d(∆,Φ). Scheme structure?

An algebraic framework for geometrically continuous splines, Math Comput, 2025.

• Survey/open questions:
– The Algebra of Splines: Duality, Group Actions and Homology,

Lanini, Schenck, and Tymoczko, 2024.

– Some Problems at the Interface of Approximation Theory
and Algebraic Geometry, Sottile, 2024.

Thank you!

https://doi.org/10.1090/mcom/4068 
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