Commutative Algebra in Approximation Theory

Nelly Villamizar Swansea University

Michael DiPasquale New Mexico State University

Workshop on the Applications of Commutative Algebra The Fields Institute, May 26, 2025

Courant hat function

Courant (1888-1972)

Bézier curves

Spline functions (definition)

Splines are piecewise polynomial functions with a specified order of smoothness on polyhedral partitions in \mathbb{R}^n .

Ex: A spline function on $[a, c] \cup [c, b]$ is any function of the form

$$f(x) = \begin{cases} f_1(x) & \text{if } x \in [a, c] \\ f_2(x) & \text{if } x \in [c, b]; & \text{for } f_1(x), f_2(x) \in \mathbb{R}[x]. \end{cases}$$

Taking a = 0, c = 2 and b = 4 then

$$f(x) = \begin{cases} x & \text{if } x \in [0,2] \\ -x^2 + 5x - 4 & \text{if } x \in [2,4] \end{cases}$$

Univariate splines

Prop: The spline $f = (f_1, f_2)$ defines a C^r -continuous function on $[a, b] \Leftrightarrow$ the polynomial $f_1 - f_2$ is divisible by $(x - c)^{r+1}$:

$$f_1 - f_2 \in \langle (x - c)^{r+1} \rangle \subseteq \mathbb{R}[x].$$

- The C^r -continuous splines $\mathcal{S}^r([a,b])$ is a vector subspace of $\mathbb{R}[x]^2$.
- If deg $f_i \leq d$ then $S_d^r([a, b])$ is a finite-dimensional vector space. For any $(f_1, f_2) \in S^r([a, b])$, we can write $(f_1, f_2) = (f_1, f_1) + (0, f_2 - f_1)$.
- Basis: $\{(1,1), (x,x), \dots, (x^d, x^d), (0, (x-c)^{r+1}), \dots, (0, (x-c)^d)\}.$

• **Strang's conjecture** (1974): the dimension of a spline space over a triangulation is given by a combinatorial formula.

• Morgan and Scott (1975) proved a dimension formula for polynomial degree $d \ge 5$ and smoothness r = 1. Strang's conjecture is not valid for arbitrary triangulations.

• **Strang's conjecture** (1974): the dimension of a spline space over a triangulation is given by a combinatorial formula.

• Morgan and Scott (1975) proved a dimension formula for polynomial degree $d \ge 5$ and smoothness r = 1. Strang's conjecture is not valid for arbitrary triangulations.

• Schumaker (1984) proved *combinatorial* lower and upper bounds for splines on arbitrary triangulations

For this numbering, the lower bound formula gives $\dim S_2^1(\Delta) \ge 9$.

Bounds on the dimension of splines on triangulations

We have $f_2^0 = 14$ triangles, $f_1^0 = 18$ edges, and $f_0^0 = 5$ vertices.

The upper bound for this numbering gives $\dim S_2^1(\Delta) \leq 11$.

For this numbering we get $\dim S_2^1(\Delta) \leq 9$, which implies $\dim S_2^1(\Delta) = 9$.

- Strang's conjecture (1974): combinatorial formula.
- Morgan and Scott (1975) proved a dimension formula for polynomial degree $d \ge 5$: Strang's conjecture is not valid for arbitrary triangulations.

• **Schumaker** (1984) proved combinatorial lower and upper bounds for splines on arbitrary triangulations

• Alfeld (1987) proved dimension formula for $d \ge 4r + 1$. The results were extended to $d \ge 3r + 2$ by Hong (1991).

• **Billera** (1988) introduced the use of **homological algebra** in the study of splines and poved Strang's conjecture for generic triangulations $S_d^1(\Delta)$.

• Stillman and Yuan (2019) counter-example to the **Schenck–Stiller** 2r + 1 conjecture. The conjecture is still open for $S_3^1(\Delta)$.

• Schenck, Stillman, and Yuan (2020): combinatorial formula does not hold in general for $d \leq \frac{22r+7}{10}$.

Splines $S^r(\Delta)$ are piecewise polynomial functions of smoothness r on a given polyhedral complex Δ embedded in \mathbb{R}^n .

A **polyhedral complex** $\Delta \subset \mathbb{R}^n$ is a finite collection of polytopes such that

- the faces of each polytope in Δ is also in Δ ,
- the intersection of any two polytopes in Δ is also in Δ .

Pure: Every maximal element of Δ is an *n*-dimensional polyhedron.

Hereditary: For any *n*-dimensional faces $\sigma, \sigma' \in \Delta_n$ such that $\tau \in \sigma \cap \sigma'$ there are $\sigma = \sigma_1, \sigma_2, \ldots, \sigma_m = \sigma' \in \Delta_n$ s.t. $\tau \in \sigma_i$, and σ_i and σ_{i+1} are adjacent.

Let $\Delta \subset \mathbb{R}^n$ be a pure, hereditary *n*-dimensional polyhedral complex, and $r, d \geq 0$ be integers.

The space of ${\rm splines}$ on Δ is defined as

$$\begin{aligned} \mathcal{S}^{r}(\Delta) &= \left\{ f \in C^{r}(\Delta) \colon f|_{\sigma} \in \mathbb{R}[x_{1}, \dots, x_{n}] \text{ for all } \sigma \in \Delta_{n} \right\} \\ \mathcal{S}^{r}_{d}(\Delta) &= \left\{ f \in \mathcal{S}^{r}(\Delta) \colon \deg(f|_{\sigma}) \leq d \text{ for all } \sigma \in \Delta_{n} \right\}. \end{aligned}$$

• The set $\mathcal{S}_d^r(\Delta)$ is a real vector space.

Algebraically, if
$$\sigma, \sigma' \in \Delta_n$$
 and $\sigma \cap \sigma' = \tau \in \Delta_{n-1}$ then

$$f \in \mathcal{S}'(\Delta) \iff f|_{\sigma} - f|_{\sigma'} \in \langle \ell_{\tau}'^{+1} \rangle$$

where ℓ_{τ} is a linear polynomial vanishing on τ .

If we embed Δ in $\{x_{n+1} = 1\} \subseteq \mathbb{R}^{n+1}$, we can consider the splines $\mathcal{S}^r(\hat{\Delta})$ on the new polyhedral complex $\hat{\Delta}$.

• Given $f = (f_1, \ldots, f_m) \in \mathcal{S}_d^r(\Delta)$, the homogenization

$$f^h = (f_1^h, \dots, f_m^h) \in \mathcal{S}_d^r(\hat{\Delta}).$$

• $S^r(\hat{\Delta}) = \bigoplus_{d \ge 0} S^r(\hat{\Delta})_d$ is a graded module, and $\dim S^r_d(\Delta) = \dim S^r(\hat{\Delta})_d$

• Then, to study the dimension of $S_d^r(\Delta)$, it suffices to study the **Hilbert** series of the module $S^r(\hat{\Delta})$.

Simplicial complex

Let Δ be a simplicial complex, to a simplex associate an orientation:

Given Δ and a ring R, the R-module C_i is generated by the oriented *i*-simplices: $[v_{j_0}, \ldots, v_{j_i}] = (-1)^{\text{sgn}(\rho)} [v_{j\rho(0)}, \ldots, v_{j\rho(i)}]$ permutation ρ

A simplicial complex gives rise to a chain complex: the boundary map

$$\partial([\sigma]) = \sum_{j=0}^{n} (-1)^{j} [v_{i_0}, \dots, \hat{v_{i_j}}, \dots, v_{i_n}] \qquad \qquad \partial \partial = 0$$

Ex: $\partial([v_1, v_2, v_3]) = [v_2, v_3] - [v_1, v_3] + [v_1, v_2]$

We extend ∂ by linearity $C_i \xrightarrow{\partial_i} C_{i-1}$ $\operatorname{Im}(\partial_{i+1}) \subseteq \ker(\partial_i)$

$$\mathcal{C}: \quad 0 \to C_n \xrightarrow{\partial_n} C_{n-1} \xrightarrow{\partial_{n-1}} \cdots \xrightarrow{\partial_1} C_0 \to 0$$

Homology modules: $H_i(\mathcal{C}) = \ker(\partial_i) / \operatorname{Im}(\partial_{i+1}).$

Relative homology with respect the boundary

Given a subspace A of X we can consider $C_i(X, A) = C_i(X)/C_i(A)$:

$$0 \to C_n(X, A) \xrightarrow{\partial_n} C_{n-1}(X, A) \xrightarrow{\partial_{n-1}} \cdots \xrightarrow{\partial_1} C_0(X, A) \to 0$$

For a simplicial complex Δ , we consider the relative homology of Δ with respect to the boundary $\partial(\Delta)$, and the ring $R = \mathbb{R}[x_0, \dots, x_n]$.

The set of interior *i*-dimensional faces of Δ is Δ_i^0 .

For $R = \mathbb{R}[x_0, \dots, x_n]$ and $r \ge 0$, define the **complex of ideals** \mathcal{J} on the simplicial complex Δ :

$$\begin{split} \mathcal{J}(\sigma) &= \langle 0 \rangle & \text{for } \sigma \in \Delta_n \\ \mathcal{J}(\tau) &= \langle \ell_\tau^{r+1} \rangle & \text{for } \tau \in \Delta_{n-1}^0 \\ \vdots \\ \mathcal{J}(\gamma) &= \sum_{\tau \ni \gamma} \langle \ell_\tau^{r+1} \rangle & \text{for } \gamma \in \Delta_0^0 \end{split}$$

Define the quotient complex by $\mathcal{R}/\mathcal{J}(\delta) = \mathcal{R}(\delta)/\mathcal{J}(\delta)$:

$$\mathcal{R}/\mathcal{J}\colon 0 \longrightarrow \bigoplus_{\sigma \in \Delta_n} \mathcal{R}(\sigma) \xrightarrow{\partial_n} \bigoplus_{\tau \in \Delta_{n-1}^0} \mathcal{R}/\mathcal{J}(\tau) \xrightarrow{\partial_{n-1}} \cdots \xrightarrow{\partial_1} \bigoplus_{\gamma \in \Delta_0^0} \mathcal{R}/\mathcal{J}(\gamma) \longrightarrow 0$$

We have: dim $\mathcal{S}_d^r(\Delta) = \dim H_n(\mathcal{R}/\mathcal{J})_d$.

Dimension formula for the spline space

The short exact sequence of complexes $0 \to \mathcal{J} \to \mathcal{R} \to \mathcal{R}/\mathcal{J} \to 0$

gives rise to a long exact sequence of homology modules:

 $\cdots \to H_{i+1}(\mathcal{R}/\mathcal{J}) \to H_i(\mathcal{J}) \to H_i(\mathcal{R}) \to H_i(\mathcal{R}/\mathcal{J}) \to H_{i-1}(\mathcal{J}) \to \cdots$

For Δ a pure and hereditary simplicial complex:

• $H_i(\mathcal{R}) = 0$ except for $H_n(\mathcal{R}) = R$, • $H_0(\mathcal{R}/\mathcal{J}) = 0$,

•
$$H_i(\mathcal{R}/\mathcal{J}) \cong H_{i-1}(\mathcal{J})$$
 for $i \leq n-1$, • $\mathcal{S}^r(\hat{\Delta}) \cong R \oplus H_1(\mathcal{J})$.

Dimension of spline spaces on triangulations

$$\dim \mathcal{S}_d^r(\Delta) = \sum_{\sigma \in \Delta_2} \dim \mathcal{R}(\sigma)_d - \sum_{\tau \in \Delta_1^0} \dim \mathcal{R}/\mathcal{J}(\tau)_d + \sum_{\gamma \in \Delta_0^0} \dim \mathcal{R}/\mathcal{J}(\gamma)_d + \dim H_0(\mathcal{J})_d$$

We know:

$$\sum_{\sigma \in \Delta_2} \dim \mathcal{R}(\sigma)_d = f_2 \begin{pmatrix} d+2\\2 \end{pmatrix} \quad (f_i^0 \text{ is the number interior } i\text{-faces})$$
$$\sum_{\tau \in \Delta_1^0} \dim \mathcal{R}/\mathcal{J}(\tau)_d = f_1^0 \bigg[\begin{pmatrix} d+2\\2 \end{pmatrix} - \begin{pmatrix} d+2-(r+1)\\2 \end{pmatrix} \bigg]$$

For computing $\dim \mathcal{R}/\mathcal{J}(\gamma)_d$ we use the resolution

 $0 \to \mathcal{R}(-\Omega_i - 1)^{a_i} \oplus \mathcal{R}(-\Omega_i)^{b_i} \to \oplus_{i=1}^{t_i} \mathcal{R}(-r - 1) \to \mathcal{R} \to \mathcal{R}/\mathcal{J}(\gamma_i) \to 0$

where t_i as the number of different slopes of the edges containing γ_i and

$$\Omega = \left\lfloor \frac{t r}{t - 1} \right\rfloor + 1, \quad a = t \left(r + 1 \right) + \left(1 - t \right) \Omega, \quad b = t - 1 - a.$$

Given a 3-dim simplicial complex Δ , take $R = \mathbb{R}[x, y, z]$:

$$0 \to \bigoplus_{\iota \in \Delta_3} \mathcal{R}(\iota) \xrightarrow{\partial_3} \bigoplus_{\sigma \in \Delta_2^0} \mathcal{R}/\mathcal{J}(\sigma) \xrightarrow{\partial_2} \bigoplus_{\tau \in \Delta_1^0} \mathcal{R}/\mathcal{J}(\tau) \xrightarrow{\partial_1} \bigoplus_{\gamma \in \Delta_0^0} \mathcal{R}/\mathcal{J}(\gamma) \to 0$$

• Then
$$\dim S_d^r(\Delta) = \sum_{\iota \in \Delta_3} \dim \mathcal{R}(\iota)_d - \sum_{\sigma \in \Delta_2^0} \dim \mathcal{R}/\mathcal{J}(\sigma)_d + \sum_{\tau \in \Delta_1^0} \dim \mathcal{R}/\mathcal{J}(\tau)_d$$

 $- \dim \mathcal{R}/\mathcal{J}(\gamma)_d + \dim \mathcal{H}_1(\mathcal{J})_d - \dim \mathcal{H}_0(\mathcal{J})_d$.
To compute $\dim \mathcal{J}(\gamma)_d$ we consider the dual points in \mathbb{P}^2 :
 $\ell_i = a_1 x + a_2 y + a_3 z \iff P_i = [a_1 : a_2 : a_3] \in \mathbb{P}^2$

Ex: $P_1 = [1:0:0], P_2 = [0:1:0], P_3 = [0:0:1].$

Ideals of fat points

If $P = [a_0 : a_1 : \cdots : a_n] \in \mathbb{P}^n$, we can consider the ideal

 $\wp = \langle L_1, \ldots, L_n \rangle$ where $L_j(P) = 0$

for independent linear forms L_j .

For a collection of points P_i and a collection of positive integers α_i $I = \wp_1^{\alpha_1} \cap \cdots \cap \wp_t^{\alpha_t}$ is called an **ideal of fat points**. Via **apolarity**:

$$\dim R/\langle \ell_1^{r+1}, \dots, \ell_t^{r+1} \rangle_d = \dim R_d - \dim \left(I^{d-r} \right)_d$$

• The expected dimension is $E(t, r+1, 3)_d = \left\lfloor \binom{d+2}{2} - t\binom{d-r+1}{2} \right\rfloor_+$ In fact, $\dim(R/\langle \ell_1^{r+1}, \dots, \ell_t^{r+1} \rangle)_d \ge F(t, r+1, 3)_d \ge E(t, r+1, 3)_d.$

• $F(t, r + 1, n)_i$ was conjectured by Fröberg (1985) for generic forms.

- This formula is used to find bounds on the dimension of trivariate splines.

In \mathbb{P}^2 this conjecture became Segre-Harbourne-Gimigliano- Hirschowitz's conjecture (2001); Laface and Ugaglia in \mathbb{P}^3 ; Dumitrescu, Brambilla, and Postighel in \mathbb{P}^n .

Dual graphs

Ex: Regular octahedron

- Then 12 two-dimensional faces lie in the planes $\ell_1 = x$, $\ell_2 = y$ and $\ell_3 = z$.
- The dual points are $P_1 = (1, 0, 0), P_2 = (0, 1, 0), P_3 = (0, 0, 1)$
- Each interior edge τ lie in the intersection of 2 of these planes \Rightarrow the corresponding 2 dual points lie on a line L_{τ} .

Thm (Cooper, Harbourne, and Teitler – 2011): Given a reduction vector $d = (d_1, \ldots, d_n)$ they provide lower and upper bounds on the dimension of the fat points subscheme in \mathbb{P}^2 .

Thm (Whiteley): For generic vertex stars $S^r(\Delta)_d = \binom{d+2}{2}$ if $d \leq \frac{3r+1}{2}$. **Prop:** For a vertex stars $\mathcal{J}(\gamma)_d = \mathcal{R}_d$ for $d > \frac{\widehat{\alpha}(I_X)r}{\widehat{\alpha}(I_X)-1}$, where $\widehat{\alpha}(I) = \lim_{s \to \infty} \frac{\alpha(I^{(s)})}{s}$ is the Waldschmidt constant.

A lower bound on the dimension of splines on tetrahedral vertex stars, SIAGA, 2021, & of tetrahedral splines in large degree, Constr Approx, 2024.

Some open questions

- **Conjecture** (splines on triangulations): dim $S_3^1(\Delta) = 3V_B + 2V_I + \sigma + 1$.
- Superspline spaces: $S_d^r(\Delta)$ –splines with mixed smoothness properties. For example, if $\tau = [\gamma, \gamma'] \in \Delta_1^\circ$, then $\mathcal{J}(\tau) = \langle \ell_{\tau}^{r_{\tau}+1} \rangle \cap \mathfrak{m}_{\gamma'}^{s_{\gamma'}+1} \cap \mathfrak{m}_{\gamma'}^{s_{\gamma'}+1}$.

When is $\mathcal{S}^{\boldsymbol{r}}(\Delta)$ a free module?

- Geometrically continuous splines: $G_d^1(\Delta, \Phi)$. Scheme structure? An algebraic framework for geometrically continuous splines, Math Comput, 2025.
- Survey/open questions:
 - The Algebra of Splines: Duality, Group Actions and Homology, Lanini, Schenck, and Tymoczko, 2024.
 - Some Problems at the Interface of Approximation Theory and Algebraic Geometry, Sottile, 2024.

Thank you!

Some open questions

- **Conjecture** (splines on triangulations): dim $S_3^1(\Delta) = 3V_B + 2V_I + \sigma + 1$.
- Superspline spaces: $S_d^r(\Delta)$ –splines with mixed smoothness properties. For example, if $\tau = [\gamma, \gamma'] \in \Delta_1^\circ$, then $\mathcal{J}(\tau) = \langle \ell_{\tau}^{r_{\tau}+1} \rangle \cap \mathfrak{m}_{\gamma'}^{s_{\gamma'}+1} \cap \mathfrak{m}_{\gamma'}^{s_{\gamma'}+1}$.

When is $\mathcal{S}^{\boldsymbol{r}}(\Delta)$ a free module?

- Geometrically continuous splines: $G_d^1(\Delta, \Phi)$. Scheme structure? An algebraic framework for geometrically continuous splines, Math Comput, 2025.
- Survey/open questions:
 - The Algebra of Splines: Duality, Group Actions and Homology, Lanini, Schenck, and Tymoczko, 2024.
 - Some Problems at the Interface of Approximation Theory and Algebraic Geometry, Sottile, 2024.

Thank you!