Fundamental Concepts and Theorems for the Final exam

- 1. The ideal $I(S) \subset \mathbb{K}[x_1, \ldots, x_n]$ of a set $S \subset \mathbb{K}^n$.
- 2. The variety $V(I) \subset \mathbb{K}^n$ of an ideal $I \subset \mathbb{K}[x_1, \ldots, x_n]$.
- 3. Parametrization and implicitization
- 4. Zariski closure
- 5. Monomial orders
- 6. Multivariable division algorithm
- 7. Dickson's Lemma
- 8. Gröbner basis of an ideal
- 9. Hilbert Basis Theorem
- 10. Ascending chain condition and Descending chain condition
- 11. Buchberger's criterion and Buchberger's algorithm for Gröbner bases
- 12. Elimination ideals
- 13. Ideal product, sum, intersection, quotient, and saturation: know how to compute these
- 14. Hilbert's weak Nullstellensatz, Hilbert's Nullstellensatz, Hilbert's Strong Nullstellensatz
- 15. Radical of an ideal
- 16. Maximal, prime, primary, and irreducible ideals
- 17. Prime decomposition of radical ideals
- 18. Primary decomposition, associated primes, minimal primes, and embedded primes
- 19. Arithmetic of ideals and varieties
- 20. Coordinate ring of a variety and affine Hilbert function basics

Practice Problems for Final Exam

Use these problems to guide your study for the final exam.

- 1. Use the Euclidean algorithm to do the following.
 - (a) Find gcd(112, 84) and find integers *a*, *b* so that $gcd(112, 84) = a \cdot 84 + b \cdot 112$.
 - (b) Find h so that $\langle x^3 + x + 1, x^2 + 2x + 3 \rangle = \langle h \rangle$.
 - (c) Find h so that $\langle x^3 x, x^2 + 3x + 2 \rangle = \langle h \rangle$.
 - (d) Find h so that $\langle x^4 x, x^5 x, x^6 x \rangle = \langle h \rangle$.

2. Find the row reduced echelon form of the matrix M below over $\mathbb{Q}(x)$ and over $\mathbb{F}_2[x]/\langle x^3 + x + 1 \rangle$.

$$\begin{bmatrix} 1 & x & x^2 \\ 0 & 1+x & 1+x^2 \end{bmatrix}$$

- 3. Prove the following equalities of ideals in $\mathbb{Q}[x, y]$:
 - (a) $\langle x+y, x-y \rangle = \langle x, y \rangle$
 - (b) $\langle x + xy, y + xy, x^2, y^2 \rangle = \langle x, y \rangle$
 - (c) $\langle y^2 xz, xy z, x^2 y \rangle = \langle y x^2, z x^3 \rangle$
- 4. A radical ideal is an ideal $I \subset \mathbb{K}[x_1, \ldots, x_n]$ satisfying that if $f^k \in I$ for some integer k, then $f \in I$.
 - (a) Prove that I(V) is a radical ideal for any set $V \subset \mathbb{K}^n$.
 - (b) Prove that $\langle x^2, y^2 \rangle$ is not a radical ideal, so it is not the ideal of any set.
- 5. Suppose $p = (2,3) \in \mathbb{R}^2$.
 - (a) Prove that $I(p) = \langle x 2, y 3 \rangle$, and that the polynomials x 2, y 3 are a Gröbner basis for I(p) with respect to any term order.
 - (b) Find the remainder under division of $F = x^2 + y^2$ by $\{x 2, y 3\}$.
- 6. If $V \subset \mathbb{K}^3$ is the curve parametrized by $x = t, y = t^3, z = t^4$, prove that $I(V) = \langle y x^3, z x^4 \rangle$.
- 7. For any ideal $I \subset \mathbb{K}[x_1, \ldots, x_n]$ and any fixed monomial order \prec on $\mathbb{K}[x_1, \ldots, x_n]$, prove that the monomials of $\mathbb{K}[x_1, \ldots, x_n]$ which are not in the lead term ideal $\mathrm{LT}_{\prec}(I)$ form a basis for $\mathbb{K}[x_1, \ldots, x_n]/I$ as a \mathbb{K} -vector space. (See Section 5.3 of Cox-Little-O'Shea if you get stuck.)
- 8. If $X = \{p_1, \ldots, p_k\} \subset \mathbb{K}^2$ is a finite set of points and $S = \mathbb{K}[x, y]$ is the polynomial ring in two variables, show that S/I(X) is a finite dimensional vector space.
- 9. Let $I = \langle x^2 + 2xy + 3y^2, x^2 + 6y^2, x^2 + xy + y^2 \rangle$. We will consider the coefficients of I as coming from two different fields.
 - (a) Show that $I \subset \mathbb{F}_{11}[x, y]$ is a monomial ideal.
 - (b) Show that $I \subset \mathbb{F}_7[x, y]$ is not a monomial ideal.
- 10. (Singularities of some plane curves)
 - (a) Let $f = y^2 x^3 x^2$. Show that the singular locus of f = 0 is the point (0,0) by explicitly showing that $\langle f, \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \rangle = \langle x, y \rangle$.
 - (b) If $f = y^k f(x)$, where $k \ge 2$ is an integer and f(x) is a polynomial in x, prove that the curve V(f) is smooth (non-singular) if and only if f(x) does not have multiple roots. If V(f) is singular, prove that the singular points all have the form (r, 0) where r is a multiple root of f(x).
- 11. If $I \subset \mathbb{K}[x_1, \ldots, x_n]$ is an ideal and $F \in \mathbb{K}[x_1, \ldots, x_n]$ is a polynomial, prove that $(I:F) \cdot F = I \cap \langle F \rangle$.

- 12. If $I = \langle f_1, \ldots, f_k \rangle \subset \mathbb{K}[x_1, \ldots, x_n]$ is an ideal and $F \in \mathbb{K}[x_1, \ldots, x_n]$ is a polynomial, prove that $\langle f_1, \ldots, f_k, 1 yF \rangle \cap \mathbb{K}[x_1, \ldots, x_n] = I : F^{\infty}$.
- 13. If I, J are ideals in $\mathbb{K}[x_1, \ldots, x_n]$, prove that $I \cap J = (tI + (1-t)J) \cap \mathbb{K}[x_1, \ldots, x_n]$ (the proof of this can be found in Section 4.3 of Cox-Little-O'Shea).
- 14. Suppose $I = \langle m_1, m_2, \dots, m_k \rangle$ is a monomial ideal generated by the monomials $m_1, \dots, m_k \in \mathbb{K}[x_1, \dots, x_n]$ and m is another monomial in $\mathbb{K}[x_1, \dots, x_n]$.

(a) Prove that

$$\langle m_1,\ldots,m_k\rangle: m = \langle \operatorname{LCM}(m_1,m)/m,\ldots,\operatorname{LCM}(m_k,m)/m\rangle,$$

where $LCM(m_i, m)$ denotes the least common multiple of m_i and m.

- (b) Compute a minimal set of generators for $\langle x^2yz^2, xy^2z^3, y^3z^4 \rangle$: xyz.
- 15. (Primary ideal basics)
 - (a) Show that the radical of a primary ideal is a prime ideal. If I is primary and $\sqrt{I} = \mathfrak{p}$, we say I is \mathfrak{p} -primary.
 - (b) Show that if I and J are p-primary then $I \cap J$ is p-primary.

16. (Radical ideal basics)

- (a) Show that if I is a radical ideal and if J is any ideal then I : J is a radical ideal.
- (b) Show that $\sqrt{I:J^{\infty}} = \sqrt{I}:J$
- (c) Show that $\sqrt{IJ} = \sqrt{I \cap J}$
- (d) A monomial is *squarefree* if it is not divisible by the square of any variable. Show that a monomial ideal is radical \iff the minimal generators of I are squarefree.
- (e) Show that if $I \subseteq \sqrt{J}$ then there exists an m such that $I^m \subseteq J$
- 17. Find the Zariski closure of the following sets:
 - (a) $\{(x, y) \in \mathbb{R}^2 : x \ge 0 \text{ and } y \ge 0\}$
 - (b) The boundary of the first quadrant in $\mathbb{R}^2 = \{(x,0) : x \ge 0\} \cup \{(0,y) : y \ge 0\}.$
 - (c) $\mathbb{R} \setminus 0$
 - (d) The set $\{(x, y) : x^2 + y^2 \le 1\}$.
 - (e) The set $\{(p,0) : p \text{ is a prime number }\} \subset \mathbb{R}^2$.
- 18. (Weak Nullstellensatz and maximal ideals) Consider the following two statements in the polynomial ring $\mathbb{K}[x_1, \ldots, x_n]$ over an algebraically closed field \mathbb{K} .
 - (a) (Weak Nullstellensatz) $V(I) \neq \emptyset \Leftrightarrow I = \mathbb{K}[x_1, \dots, x_n].$
 - (b) Every maximal ideal $I \subseteq \mathbb{K}[x_1, \ldots, x_n]$ has the form $I = \langle x_1 a_1, \ldots, x_n a_n \rangle$ for some $a_1, \ldots, a_n \in \mathbb{K}$.

In class we showed $18a \Rightarrow 18b$. Prove that $18b \Rightarrow 18a$. In other words, prove that the description of maximal ideals in 18b is equivalent to the weak Nullstellensatz.

19. (Exploring maximal ideals) Suppose $f_1(x), \ldots, f_n(x) \in \mathbb{K}[x]$. In the polynomial ring $\mathbb{K}[x_1, \ldots, x_n]$ (where \mathbb{K} is any field), consider the ideal

$$I = \langle f_1(x_1), x_2 - f_2(x_1), \dots, x_n - f_n(x_1) \rangle$$

- (a) Show that every $f \in \mathbb{K}[x_1, \ldots, x_n]$ can be written uniquely as f = q + r where $q \in I$ and $r \in \mathbb{K}[x_1]$ with either r = 0 or $\deg(r) < \deg(f_1)$. Hint: use Lex order with x_1 the smallest variable (instead of the largest).
- (b) Use part (a) to prove that $\mathbb{K}[x_1, \dots, x_n]/I \cong \mathbb{K}[x]/\langle f_1(x) \rangle$.
- (c) Prove that the following are equivalent:
 - i. *I* is prime.
 - ii. I is maximal.
 - iii. $f_1(x)$ is irreducible.
- (d) Prove that I is radical if and only if $f_1(x)$ is squarefree.
- 20. (Squarefree lead term ideals) There is a general philosophy that good properties of an ideal I cannot be gained when passing to the lead term ideal $\langle LT(I) \rangle$, only lost. In this problem you will prove one instance of this philosophy. Suppose $I \subset \mathbb{K}[x_1, \ldots, x_n]$ is an ideal and $G = \{g_1, \ldots, g_r\}$ is a Gröbner basis for I satisfying that $LT(g_i)$ is squarefree for $i = 1, \ldots, r$.
 - (a) If $f \in \sqrt{I}$, prove that LT(f) is divisible by $LT(g_i)$ for some $g_i \in G$. Hint: $f^r \in I$ for some r.
 - (b) Prove that I is radical. Hint: show that G is a Gröbner basis for \sqrt{I} .
 - (c) From (a) and (b), conclude that if (LT(I)) is radical, then I is radical.
 - (d) Find an example to show that if I is radical, it is not necessarily true that $\langle LT(I) \rangle$ is radical.
- 21. (Empty varieties) Find examples of ideals I, J in $\mathbb{R}[x, y]$ so that $V(I) = V(J) = \emptyset$.
- 22. (Prime ideal basics)
 - (a) Show that an ideal P is prime if and only if for any two ideals $I, J, IJ \subseteq P \Rightarrow I \subseteq P$ or $J \subseteq P$.
 - (b) Show that if I_1, \ldots, I_k are ideals and P is prime, then $\bigcap_{i=1}^k I_i \subseteq P$ if and only if $I_j \subseteq P$ for some j.
 - (c) (Prime avoidance) If P_1, \ldots, P_k are prime ideals and $I \subseteq \bigcup_{i=1}^k P_i$ then $I \subseteq P_j$ for some j. Hint: use induction on k.
- 23. (Affine Hilbert Function) The ideal $I = \langle y^2 y, x^3 3x^2 + 2x \rangle$ is the ideal of six points in \mathbb{R}^2 , and its generators form a Gröbner basis for I with respect to graded reverse lexicographic order. Compute the affine Hilbert function of I and explain its geometric significance.