
Fundamental Concepts and Theorems for the Final exam

1. The ideal I(S) ⊂ K[x1, . . . , xn] of a set S ⊂ Kn.

2. The variety V (I) ⊂ Kn of an ideal I ⊂ K[x1, . . . , xn].

3. Parametrization and implicitization

4. Zariski closure

5. Monomial orders

6. Multivariable division algorithm

7. Dickson's Lemma

8. Gröbner basis of an ideal

9. Hilbert Basis Theorem

10. Ascending chain condition and Descending chain condition

11. Buchberger's criterion and Buchberger's algorithm for Gröbner bases

12. Elimination ideals

13. Ideal product, sum, intersection, quotient, and saturation: know how to compute
these

14. Hilbert's weak Nullstellensatz, Hilbert's Nullstellensatz, Hilbert's Strong Nullstel-
lensatz

15. Radical of an ideal

16. Maximal, prime, primary, and irreducible ideals

17. Prime decomposition of radical ideals

18. Primary decomposition, associated primes, minimal primes, and embedded primes

19. Arithmetic of ideals and varieties

20. Coordinate ring of a variety and a�ne Hilbert function basics

Practice Problems for Final Exam
Use these problems to guide your study for the �nal exam.

1. Use the Euclidean algorithm to do the following.

(a) Find gcd(112, 84) and �nd integers a, b so that gcd(112, 84) = a · 84 + b · 112.
(b) Find h so that 〈x3 + x+ 1, x2 + 2x+ 3〉 = 〈h〉.
(c) Find h so that 〈x3 − x, x2 + 3x+ 2〉 = 〈h〉.
(d) Find h so that 〈x4 − x, x5 − x, x6 − x〉 = 〈h〉.
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2. Find the row reduced echelon form of the matrix M below over Q(x) and over
F2[x]/〈x3 + x+ 1〉. [

1 x x2

0 1 + x 1 + x2

]
3. Prove the following equalities of ideals in Q[x, y]:

(a) 〈x+ y, x− y〉 = 〈x, y〉
(b) 〈x+ xy, y + xy, x2, y2〉 = 〈x, y〉
(c) 〈y2 − xz, xy − z, x2 − y〉 = 〈y − x2, z − x3〉

4. A radical ideal is an ideal I ⊂ K[x1, . . . , xn] satisfying that if f
k ∈ I for some integer

k, then f ∈ I.

(a) Prove that I(V ) is a radical ideal for any set V ⊂ Kn.

(b) Prove that 〈x2, y2〉 is not a radical ideal, so it is not the ideal of any set.

5. Suppose p = (2, 3) ∈ R2.

(a) Prove that I(p) = 〈x − 2, y − 3〉, and that the polynomials x − 2, y − 3 are a
Gröbner basis for I(p) with respect to any term order.

(b) Find the remainder under division of F = x2 + y2 by {x− 2, y − 3}.

6. If V ⊂ K3 is the curve parametrized by x = t, y = t3, z = t4, prove that I(V ) =
〈y − x3, z − x4〉.

7. For any ideal I ⊂ K[x1, . . . , xn] and any �xed monomial order ≺ on K[x1, . . . , xn],
prove that the monomials of K[x1, . . . , xn] which are not in the lead term ideal
LT≺(I) form a basis for K[x1, . . . , xn]/I as a K-vector space. (See Section 5.3 of
Cox-Little-O'Shea if you get stuck.)

8. If X = {p1, . . . , pk} ⊂ K2 is a �nite set of points and S = K[x, y] is the polynomial
ring in two variables, show that S/I(X) is a �nite dimensional vector space.

9. Let I = 〈x2 + 2xy + 3y2, x2 + 6y2, x2 + xy + y2〉. We will consider the coe�cients
of I as coming from two di�erent �elds.

(a) Show that I ⊂ F11[x, y] is a monomial ideal.

(b) Show that I ⊂ F7[x, y] is not a monomial ideal.

10. (Singularities of some plane curves)

(a) Let f = y2− x3− x2. Show that the singular locus of f = 0 is the point (0, 0)
by explicitly showing that 〈f, ∂f

∂x
, ∂f
∂y
〉 = 〈x, y〉.

(b) If f = yk − f(x), where k ≥ 2 is an integer and f(x) is a polynomial in x,
prove that the curve V (f) is smooth (non-singular) if and only if f(x) does
not have multiple roots. If V (f) is singular, prove that the singular points all
have the form (r, 0) where r is a multiple root of f(x).

11. If I ⊂ K[x1, . . . , xn] is an ideal and F ∈ K[x1, . . . , xn] is a polynomial, prove that
(I : F ) · F = I ∩ 〈F 〉.
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12. If I = 〈f1, . . . , fk〉 ⊂ K[x1, . . . , xn] is an ideal and F ∈ K[x1, . . . , xn] is a polynomial,
prove that 〈f1, . . . , fk, 1− yF 〉 ∩K[x1, . . . , xn] = I : F∞.

13. If I, J are ideals in K[x1, . . . , xn], prove that I ∩ J = (tI + (1− t)J)∩K[x1, . . . , xn]
(the proof of this can be found in Section 4.3 of Cox-Little-O'Shea).

14. Suppose I = 〈m1,m2, . . . ,mk〉 is a monomial ideal generated by the monomials
m1, . . . ,mk ∈ K[x1, . . . , xn] and m is another monomial in K[x1, . . . , xn].

(a) Prove that

〈m1, . . . ,mk〉 : m = 〈LCM(m1,m)/m, . . . ,LCM(mk,m)/m〉,

where LCM(mi,m) denotes the least common multiple of mi and m.

(b) Compute a minimal set of generators for 〈x2yz2, xy2z3, y3z4〉 : xyz.

15. (Primary ideal basics)

(a) Show that the radical of a primary ideal is a prime ideal. If I is primary and√
I = p, we say I is p-primary.

(b) Show that if I and J are p-primary then I ∩ J is p-primary.

16. (Radical ideal basics)

(a) Show that if I is a radical ideal and if J is any ideal then I : J is a radical
ideal.

(b) Show that
√
I : J∞ =

√
I : J

(c) Show that
√
IJ =

√
I ∩ J

(d) A monomial is squarefree if it is not divisible by the square of any variable.
Show that a monomial ideal is radical ⇐⇒ the minimal generators of I are
squarefree.

(e) Show that if I ⊆
√
J then there exists an m such that Im ⊆ J

17. Find the Zariski closure of the following sets:

(a) {(x, y) ∈ R2 : x ≥ 0 and y ≥ 0}
(b) The boundary of the �rst quadrant in R2 = {(x, 0) : x ≥ 0} ∪ {(0, y) : y ≥ 0}.
(c) R \ 0
(d) The set {(x, y) : x2 + y2 ≤ 1}.
(e) The set {(p, 0) : p is a prime number } ⊂ R2.

18. (Weak Nullstellensatz and maximal ideals) Consider the following two statements
in the polynomial ring K[x1, . . . , xn] over an algebraically closed �eld K.

(a) (Weak Nullstellensatz) V (I) 6= ∅ ⇔ I = K[x1, . . . , xn].

(b) Every maximal ideal I ⊆ K[x1, . . . , xn] has the form I = 〈x1−a1, . . . , xn−an〉
for some a1, . . . , an ∈ K.
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In class we showed 18a⇒18b. Prove that 18b⇒18a. In other words, prove that the
description of maximal ideals in 18b is equivalent to the weak Nullstellensatz.

19. (Exploring maximal ideals) Suppose f1(x), . . . , fn(x) ∈ K[x]. In the polynomial
ring K[x1, . . . , xn] (where K is any �eld), consider the ideal

I = 〈f1(x1), x2 − f2(x1), . . . , xn − fn(x1)〉

(a) Show that every f ∈ K[x1, . . . , xn] can be written uniquely as f = q+ r where
q ∈ I and r ∈ K[x1] with either r = 0 or deg(r) < deg(f1). Hint: use Lex
order with x1 the smallest variable (instead of the largest).

(b) Use part (a) to prove that K[x1, . . . , xn]/I ∼= K[x]/〈f1(x)〉.
(c) Prove that the following are equivalent:

i. I is prime.

ii. I is maximal.

iii. f1(x) is irreducible.

(d) Prove that I is radical if and only if f1(x) is squarefree.

20. (Squarefree lead term ideals) There is a general philosophy that good properties
of an ideal I cannot be gained when passing to the lead term ideal 〈LT(I)〉, only
lost. In this problem you will prove one instance of this philosophy. Suppose
I ⊂ K[x1, . . . , xn] is an ideal and G = {g1, . . . , gr} is a Gröbner basis for I satisfying
that LT(gi) is squarefree for i = 1, . . . , r.

(a) If f ∈
√
I, prove that LT(f) is divisible by LT(gi) for some gi ∈ G. Hint:

f r ∈ I for some r.

(b) Prove that I is radical. Hint: show that G is a Gröbner basis for
√
I.

(c) From (a) and (b), conclude that if 〈LT(I)〉 is radical, then I is radical.

(d) Find an example to show that if I is radical, it is not necessarily true that
〈LT(I)〉 is radical.

21. (Empty varieties) Find examples of ideals I, J in R[x, y] so that V (I) = V (J) = ∅.

22. (Prime ideal basics)

(a) Show that an ideal P is prime if and only if for any two ideals I, J , IJ ⊆ P ⇒
I ⊆ P or J ⊆ P .

(b) Show that if I1, . . . , Ik are ideals and P is prime, then ∩k
i=1Ii ⊆ P if and only

if Ij ⊆ P for some j.

(c) (Prime avoidance) If P1, . . . , Pk are prime ideals and I ⊆ ∪ki=1Pi then I ⊆ Pj

for some j. Hint: use induction on k.

23. (A�ne Hilbert Function) The ideal I = 〈y2 − y, x3 − 3x2 + 2x〉 is the ideal of six
points in R2, and its generators form a Gröbner basis for I with respect to graded
reverse lexicographic order. Compute the a�ne Hilbert function of I and explain
its geometric signi�cance.
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