
1. Fields

Fields and vector spaces.
Typical vector spaces: R,Q,C. For infinite dimensional vector spaces, see notes

by Karen Smith. Important to consider a field as a vector space over a sub-field.
Also have: algebraic closure of Q. Galois fields: GF (pa).
Don’t limit what field you work over.

2. Polynomial rings over a field

Notation for a polynomial ring: K[x1, . . . , xn].
Monomial: xα1

1 xα2
2 · · ·xαn

n

Set α = (α1, . . . , αn) ∈ Nn.
Write xα for xα1

1 xα2
2 · · ·xαn

n .
A term is a monomial multiplied by a field element: cαx

α.
A polynomial is a finite K-linear combination of monomials:

f =
∑
α

cαx
α,

so a polynomial is a finite sum of terms. The support of f are the monomials that
appear (with non-zero coefficients) in the polynomial f .

If α = (α1, . . . , αn), put |α| = α1 + · · ·+ αn.
If f ∈ K[x1, . . . , xn], deg(f) = max{|α| : xα is in the support of f}.

Example 2.1. f = 7x3y2z + 11xyz2 deg(f) = max{6, 4} = 6. 7x3y2z is a term.
x3y2z is a monomial.

Given f ∈ K[x1, . . . , xn], evaluation is the map Ff : Kn → K given by (c1, . . . , cn)→
f(c1, . . . , cn).

When is Ff the zero map?

Example 2.2. If K is a finite field, Ff can be the zero map without f being the
zero polynomial. For instance take the field with two elements, K = Z/2Z, and
consider the polynomial f = x2 +x = x(x+1). Then f is not zero in the ring K[x],
however f(c) = 0 for all c ∈ K (there are only two to check!).

Theorem 2.3. If K is an infinite field, then Ff is the zero map if and only if f is
the zero polynomial.

Proof. (From Cox-Little-O’Shea) by induction.
If n = 1, then a non-zero f ∈ K[x] of degree d has at most d distinct roots

(Euclidean algorithm). Ff : K→ K evaluates to zero only at roots of f .
Assume this is true up to n − 1 variables. Consider K[x1, . . . , xn] as the poly-

nomial ring K[x1, . . . , xn−1][xn] (the polynomial ring in the variable xn with co-
efficients in the polynomial ring K[x1, . . . , xn−1]). Let f =

∑
gix

i
n, where gi ∈

K[x1, . . . , xn−1]. Consider (α1, . . . , αn−1) ∈ Kn−1. Evaluate f(α1, . . . , αn−1, xn);
this is a polynomial in a single variable, so by the base case it is zero if and only if
gi(α1, · · · , αn−1) = 0 for every coefficient. By induction, gi(α1, . . . , αn−1) = 0 for
all (α1, . . . , αn−1) ∈ Kn−1 if and only if gi is the zero polynomial. Hence f must
be the zero polynomial. �

Corollary 2.4. Let K be an infinite field. Let f, g ∈ K[x1, . . . , xn]. Then Ff = Fg
if and only if f = g as polynomials.
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3. Affine Varieties

Definition 3.1. Let f1, . . . , fr ∈ K[x1, . . . , xn]. The affine variety cut out by
f1, . . . , fr is denoted by V (f1, . . . , fr) and is defined by

V (f1, . . . , fr) = {c = (c1, . . . , cn) ∈ Kn : fi(c) = 0 for all f1, . . . , fr}

Example 3.2. f = x2 + y2 − 1 ∈ R[x, y]. Then V (f) = unit circle. g = x2 + y2 ∈
R[x, y]. Then V (g) = point (0, 0). h = x2 + y2 + 1 ∈ R[x, y]. Then V (h) = ∅!
Notice that the codimension of these affine varieties is 1, 0,−1, respectively.

Example 3.3. Let f1, f2 ∈ R[x, y, z], with f1 = x+y+z+7, f2 = x+3y+2z+11.
Then V (f1, f2) is a line in R3.

Example 3.4. Consider f = x2+2xy+y+1 ∈ F3[x, y]. Then V (f) is a hypersurface
in F3

3. There are nine points in F3
3. If x = 0, f(0, y) = y + 1, so y = 2. If x = 1,

f(1, y) = 2, so there are no solutions. If x = 2, then f(2, y) = 2 + 2y, so y = 2
again. So V (f) = {(0, 2), (2, 2)}.

Remark 3.5. Given f1, . . . , fr ∈ Z[x1, . . . , xn], it is interesting to consider the
cardinality of V (f1, . . . , fr) when f1, . . . , fr are considered to be in finite fields
of the form GF (pt). These cardinalities could be encoded in a power series, for
instance. There are many open problems considering the relationships between the
varieties V (f1, . . . , fr) over finite fields and the varieties these polynomials define
over Z,Q,R,C, etc.

Remark 3.6. Chebatorev’s density theorem gives probabilistic information about
the Galois group of a polynomial by looking at splitting types of the polynomial
over different finite fields.

Example 3.7 (Chebatorev’s density theorem in action). The table below lists the
orders and cycle types of transitive subgroups of the symmetric group S4. These
are the possible Galois groups of irreducible polynomials of degree four.

G 1,1,1,1 1,1,2 1,3 4 2,2 |G|
V4 1 0 0 0 3 4
C4 1 0 0 2 1 4
D4 1 2 0 2 3 8
A4 1 0 8 0 3 12
S4 1 6 8 6 3 24

Suppose you would like to compute the Galois group of the irreducible polynomial
f(x) = x4 + 3x2 − 1. Compute its factorization modulo different primes. The
factorizations have to match the cycle types.

Reducing f(x) modulo first 10,000 primes. Factorization type 2,2 appears 3762
times. Factorization type 1,1,1,1 appears 1222 times. Factorization type 1,1,2
appears 2514 times. Irreducible appears 2502 times.

Chebatorev’s density theorem says that, in the limit, the probability that f(x)
factors as a particular type is precisely the probability of picking that cycle type in
the Galois group.

The statistics above match the expected cycle types of the D4 group, which is
exactly what the Galois group of f(x) is.

Example 3.8 (Four-bar Linkage). Consider two fixed points with two rigid bars
attached, and one more rigid bar connecting the movable endpoints of the two

https://en.wikipedia.org/wiki/Chebotarev%27s_density_theorem
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movable bars. Attach a rigid triangle to the last bar. The curve traced out by the
tip of the triangle is called the coupler curve of the mechanism.

Kempe’s universality theorem says that any connected component of a real alge-
braic curve in the plane can be realized as the coupler curve of a mechanism. Some
corrections and extensions of Kempe’s theorem appear in Timothy Abbott’s mas-
ters thesis. Here are some questions related to linkages:

• How can you construct a linkage with prescribed properties?
• Given a linkage, how do you find equations defining its motion?

Example 3.9 (Conformation space of cyclo-octane). In cyclo-octane there are
eight carbon atoms linked in a cycle by edges of a fixed length and with fixed bond
angles between the edges at each atom. To eliminate some degrees of freedom, fix
the plane determined by three atoms. So consider that three (occuring in order)
have coordinates (0, 0, 0), (a, 0, 0), and (b, c, 0) (these coordinates will be completely
determined by the length of the edges and the common angle). Once these are fixed,
the two adjacent points on either end can each trace out a circle’s worth of positions,
and for each pair of choices made for the positions of these two, there are finitely
many possible positions for the remaining three points. Thus the conformation
space of cyclo-octane is a surface that is a finite covering of the torus S1 × S1, and
it naturally lives in R15 (the fifteen parameters come from the coordinates of the
remaining 5 points which are not fixed).

Theorem 3.10. Let A = V (f1, . . . , fr), B = V (g1, . . . , gs), with f1, . . . , fr, g1, . . . , gs ∈
K[x1, . . . , xn]. Then A ∪B and A ∩B are affine varieties.

Proof. Check that A∩B = V (f1, . . . , fr, g1, . . . , gs) and A∪B = V ({figj : 1 ≤ i ≤
r, 1 ≤ j ≤ s}). �

Some questions:

• Is V (f1, . . . , fr) = ∅?
• If |V (f1, . . . , fr)| < ∞, can we find them? Can we count how many there

are?
• In general, can we describe V (f1, . . . , fr)?

4. Parametrizations of Affine Varieties

Example 4.1. Consider the variety V (x + y + z − 3, x + 2y + 3z − 5) ⊂ R3.
This is defined implicitly (this means the variety is given by equations). Finding a
Gröbner basis is a generalization of Gaussian elimination (it’s Gaussian elimination
on steroids). One the augmented matrix for this linear system is put in row reduced
echelon form, we obtain the system

x −z = 1
y −2z = 2

From this we obtain x = z+ 1, y = −2z+ 2. Setting z = t, we get the parametriza-
tion:

x = t+ 1
y = −2t+ 2
z = t

https://en.wikipedia.org/wiki/Kempe%27s_universality_theorem
http://web.mit.edu/tabbott/www/papers/mthesis.pdf
http://web.mit.edu/tabbott/www/papers/mthesis.pdf
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Example 4.2. Consider V (x2+y2−1) (the unit circle). A rational parametrization
is:

x =
1− t2

1 + t2

y =
2t

1 + t2

This parametrization can be determined by considering where the line with slope t
through the point (−1, 0) intersects the unit circle.

Definition 4.3. A rational function in the variables t1, . . . , tn is a quotient f
g where

f, g ∈ K[t1, . . . , tn]. Rational functions can be identified by the usual rule f
g = f ′

g′

if and only if fg′ = f ′g. The set of all rational functions in t1, . . . , tn is denoted
K(t1, . . . , tn).

Proposition 4.4. K(t1, . . . , tn) is a field.

Example 4.5 (Tangent surfaces of curves). The twisted cubic is parametrized as
x = t, y = t2, z = t3, −∞ < t < ∞. It’s tangent surface is the set of points that
lie on any tangent line of the twisted cubic. Given a good parametrization r(t) of
a smooth curve (tangent vectors don’t vanish), a parametrization for the tangent
surface is just s(t, u) = r(t) + u · r′(t). For the twisted cubic, the tangent surface is
parametrized by:

x = t+ u
y = t2 + 2tu
z = t3 + 3t2u

Any smooth variety has an associated tangent variety which is the set of all points
which lie on the variety itself or on any tangent plane.

Example 4.6. Arithmetic in rational function fields works just like it does nor-
mally. For instance, let the matrix M be defined by

M =

[
1 2 3
4 5 + x 6

]
.

We will consider M to be a 2 × 3 matrix with entries in the rational function
field Q(x) (we could also consider entries in Z(x), but then we would not be able
to divide). We can find the reduced row echelon form of M with the usual row
operations. This yields:

rref(M) =

1 0
3x+ 3

x− 3

0 1
−6

x− 3

 .
We can extract from rref(M) all the usual information that we do in linear algebra.
For instance, M has rank 2 as a matrix over the field Q(x). We could also derive
a basis for the null space of M , etc.

Remark 4.7. The field K(t1, . . . , tn) is a special case of something called a field of
fractions, which can be constructed for any integral domain.

Definition 4.8. An integral domain is a commutative ring R in which there are
no zero divisors (i.e. if a, b ∈ R and ab = 0 then a = 0 or b = 0).
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Definition 4.9. If R is an integral domain, then the field of fractions of R, denoted
frac(R), is the field consisting of all fractions

{a
b

: a, b ∈ R and b 6= 0},

where a
b = a′

b′ if ab′ = a′b.

Remark 4.10. There are several standard operations which preserve the property
of being an integral domain. If R is an integral domain then so are R[x] and R[[x]]
(power series ring in the variable x over R). Moreover, frac(R[x]) = frac(R)(x).

If P is a prime ideal of R (we will define this later) then the quotient R/P is an
integral domain (this is one way to define a prime ideal).

Definition 4.11. A rational parametric representation of a variety V ⊂ Kn is
given by a collection of rational functions f1

g1
, f2g2 , . . . ,

fn
gn
∈ K(t1, . . . , tn) such that

x1 = f1
g1

x2 = f2
g2

...

xn = fn
gn

lie in V for all values of ti and such that there is no smaller variety W for which
this is true.

Definition 4.12. A variety V ⊂ Kn which has a rational representation is called
unirational.

Remark 4.13. A variety V is said to be given implicitly if it is described in the
form V (f1, . . . , fr) for some polynomials f1, . . . , fr. An implicit representation is
important for answering the question: given some point p ∈ Kn, is p ∈ V ? On the
other hand, parametric representations are useful for producing lots of points on V
(for instance if you would like to draw a picture).

Only very special varieties have parametric representations. There are several
important questions related to this:

(1) Given a parametric representation, can we find an implicit representation?
(2) Given an implicit representation, can we determine if the variety has a

parametric representation?
(3) If a variety has a parametric representation, can we find one?

Example 4.14. The twisted cubic is the variety V in R3 defined by the parametriza-
tion x = t, y = t2, and z = t3. Implicitly, V is defined by the equations x2−y, x3−z,
and xy − z.

5. Ideals of affine varieties

Definition 5.1. A subset I ⊂ K[x1, . . . , xn] is an ideal if it satisfies the following
two properties:

(1) If f, g ∈ I then f + g ∈ I and
(2) If f ∈ I, g ∈ K[x1, . . . , xn] then fg ∈ I.

If f1, . . . , fr ∈ K[x1, . . . , xn] then the ideal generated by f1, . . . , fr, denoted 〈f1, . . . , fr〉
is the smallest ideal (under containment) containing the polynomials f1, . . . , fr.
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Proposition 5.2. If f1, . . . , fr ∈ K[x1, . . . , xn] then 〈f1, . . . , fr〉 = {
∑r
i=1 gifi :

g1, . . . , gr ∈ K[x1, . . . , xn]}.

Proof. Exercise. �

Definition 5.3 (Fundamental construction for ideals). An ideal I ⊂ K[x1, . . . , xn]
is finitely generated if there are polynomials f1, . . . , fr so that I = 〈f1, . . . , fr〉.

We will see the proof of the following fundamental result later:

Theorem 5.4 (Hilbert Basis Theorem). Every ideal in K[x1, . . . , xn] is finitely
generated.

Definition 5.5 (Variety defined by a set of polynomials). Given any subset of
polynomials (possibly infinite) T ⊂ K[x1, . . . , xn], the set V (T ) ⊂ Kn is defined as

V (T ) = {(a1, . . . , an) ∈ Kn : f(a1, . . . , an) = 0 for all f ∈ T}.
This is particularly important when T is an ideal of K[x1, . . . , xn].

Proposition 5.6. The variety defined by f1, . . . , fr is the same as the variety
defined by the ideal I = 〈f1, . . . , fr〉. In symbols, V (f1, . . . , fr) = V (〈f1, . . . , fr〉).
More generally, the variety defined by any set T of polynomials is the same as the
variety defined by the ideal 〈T 〉 generated by T .

Proof. Exercise. �

Remark 5.7. By Proposition 5.6, if T is any set of polynomials then V (T ) =
V (〈T 〉). Using the Hilbert basis theorem 〈T 〉 = 〈f1, . . . , fr〉 for some set of poly-
nomials f1, . . . , fr. Again by Proposition 5.6, V (〈f1, . . . , fr〉) = V (f1, . . . , fr). It
follows that V (T ) is always an affine variety. More intuitively, this is saying that
the variety defined by a possibly infinite set of polynomials can always be defined
by finitely many polynomials.

Definition 5.8 (Ideal of a set). Suppose S ⊂ Kn is any subset (this is particularly
important if S is an affine variety). The ideal of S is

I(S) = {f ∈ K[x1, . . . , xn] : f(a1, . . . , an) = 0 for all (a1, . . . , an) ∈ S}.

Proposition 5.9. For any S ⊂ Kn, I(S) is an ideal.

Proof. Exercise. �

Definition 5.10 (Zariski Closure). Let S ⊂ Kn the Zariski closure of S is defined
as S̄ = V (I(S)).

Remark 5.11. By Remark 5.7, the Zariski closure of any set S ⊂ Kn is an affine
variety.

Proposition 5.12. If S ⊂ Kn, then

(1) V (I(S̄)) = S̄
(2) S ⊂ S̄

Example 5.13. Consider x2 ∈ R[x]. Then V (x2) = {a ∈ R : a2 = 0} = {0}.
I(V (x2)) = {f ∈ R[x] : f(a) = 0} = {x · g : g ∈ R[x]} = 〈x〉.

Example 5.14. Consider S = (0, 1) ⊂ R1 (the open interval from 0 to 1). Then
I(S) = {f ∈ R[x] : f(a) = 0 for all a ∈ (0, 1)} = {0}. Also V (I(S)) = {a ∈ R1 :
f(a) = 0 for every f ∈ I(S)} = R1. So S̄ = R.



7

Example 5.15. Consider S = {(1, 0), (0, 1), (0, 0)} ⊂ R2. Then I(S) has no linear
polynomials (since the points are not on a line). I(S) has three linearly independent
quadrics. A possible basis for this space of quadrics is xy, x(x+ y − 1), and y(x+
y − 1). Check that these are linearly independent! In fact, I(S) is generated by
these three quadrics, but it might be difficult to prove this until we have more tools
(try it!).

Definition 5.16. If T ⊂ K[x1, . . . , xn], then define T̄ = I(V (T )).

Proposition 5.17. If T ⊂ K[x1, . . . , xn], then

(1) T ⊂ T̄
(2) I(V (T̄ )) = T̄ .

Proposition 5.18. Suppose V,W ⊂ K[x1, . . . , xn]. Then V̄ ⊂ W̄ if and only if
I(V ) ⊃ I(W ) and V̄ = W̄ if and only if I(V ) = I(W ).

By Remark 5.11, affine varieties can be though of as precisely the possible Zariski
closures of sets in Kn. Algebraically, this leads us to ask what types of ideals occur
as closures of subsets of K[x1, . . . , xn]. We will come back to this question. Let’s
close with two fundamental questions.

(1) Given an ideal I ⊂ K[x1, . . . , xn], can we find finitely many polynomials
f1, . . . , fr so that I = 〈f1, . . . , fr〉? The answer to this question is yes
by the Hilbert Basis theorem (which we will see later), but finding such
polynomials can be a difficult task! Remember Example 5.15.

(2) If I = 〈f1, . . . , fr〉 and g ∈ K[x1, . . . , xn], can we determine if g ∈ I? This
is known as the ideal membership problem. A solution to this problem is
given by Gröbner bases, which we will see soon.

6. Polynomial rings in one variable over a field

We will describe the structure of ideals in the ring K[x]. Suppose f ∈ K[x].
Then f = adx

d + ad−1x
d−1 + · · · + a1x + a0 with a0, . . . , ad. The leading term of

f(x) is LT(f) = adx
d and the degree of f(x) is deg(f) = d, the maximum degree

of a power of x appearing in f(x).

Proposition 6.1. Given f, g ∈ K[x], there are unique polynomials Q,R ∈ K[x]
such that f = gQ+R with either R = 0 or deg(R) < deg(g).

We will prove Proposition 6.1 via an algorithm, which we first exhibit by example.

Example 6.2. Let f = x3 + 3x + 2 and g = x + 1. We can produce Q and R by
polynomial long division.

x2 − x+ 4

x+ 1
)

x3 + 3x+ 2
− x3 − x2

− x2 + 3x
x2 + x

4x+ 2
− 4x− 4

− 2

We can read off Q and R: Q = x2 − x+ 4 and R = −2.
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The Long division algorithm below generalizes the previous example.
INPUT: R = f,Q = 0
WHILE LT(g)|LT(R) do:

Q = Q+ LT(R)
LT(g)

R = R− LT(R)
LT(g) g

OUTPUT: Q,R

Proof of Proposition 6.1. The existence of Q,R satisfying the properties is estab-
lished by the Long division algorithm described above. To establish uniqueness,
suppose there are two representations f = gQ + R and f = gQ′ + R′ satisfying
the given properties. We see that 0 = g(Q−Q′) + (R′ −R). Since R′ and R have
degree strictly less than g, Q−Q′ = 0 and hence Q = Q′ and R = R′. �

Corollary 6.3. A degree d polynomial in K[x] has at most d roots.

Proof. Exercise. Or see the book (Corollary 3 in Section 1.5). �

Corollary 6.4. If I is an ideal in K[x] then there is an h ∈ K[x] so that I = 〈h〉.

Proof. If I is the zero ideal this is clear (I = 〈0〉). Otherwise pick any h ∈ I so that
h has smallest degree (we can do this by well-ordering of the integers). Note that
〈h〉 ⊂ I. Now let f ∈ I and apply the division algorithm. Write f = hQ+R. Then
deg(R) < deg(h). But also R = f − hQ ∈ I, so if R 6= 0 then deg(R) ≥ deg(h) by
the way that h was chosen. So R = 0, f = hQ, and hence I = 〈h〉. �

Definition 6.5. Let f, g ∈ K[x]. A greatest common divisor of f and g (GCD) is
a polynomial h satisfying

(1) h | f and h | g and
(2) if p | f and p | g then p | h.

Remark 6.6. Any two GCD’s of f and g differ by multiplication by a constant.

Proposition 6.7. If f, g ∈ K[x] then a GCD of f and G exists.

Proof. By Corollary 6.4, there is some h ∈ K[x] so that 〈f, g〉 = 〈h〉. We claim that
h is a GCD of f and g. Immediately, h | f and h | g. Since h ∈ 〈f, g〉, there are
A,B ∈ K[x] so that h = Af + Bg. If p | f and p | g then f = pC and g = pD for
some C,D ∈ K[x]. So h = ApC +BpD = p(AC +BD), so p | h. �

How do you produce a GCD of f and g? This is produced by the Euclidean
algorithm, which we now describe. Start with f, g (assume deg(f) ≥ deg(g)).

f = gQ1 +R1 deg(g) > deg(R1) or R1 = 0
g = R1Q2 +R2 deg(R1) > deg(R2) or R2 = 0

R1 = R2Q2 +R3 deg(R2) > deg(R3) or R3 = 0
...

Rk−2 = Rk−1Qk−1 +Rk
Rk = 0

Since the degrees of the remainders Ri are decreasing, eventually we must hit a
degree of zero, which shows that eventually we will terminate. Then a GCD of f
and g is exactly the last non-zero remainder, namely Rk−1. Reversing the successive
applications of the long division also allows you to write a GCD as a polynomial
combination of f and g.
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Definition 6.8. A GCD of the polynomials f1, . . . , fr is a polynomial h satisfying:

(1) h | f1, . . . , h | fr and
(2) if p | f1, . . . , p | fr then p | h.

Proposition 6.9. A GCD of f1, . . . , fr can be defined by GCD(f1, . . . , fr) =
GCD(f1, GCD(f1, . . . , fr)).

This allows a GCD of many polynomials to be computed iteratively.
At this point we can solve the ideal membership problem in one variable: to check

that the polynomial g ∈ K[x] is in the ideal 〈f1, . . . , fr〉 ⊂ K[x] do the following:

(1) Find the gcd h of f1, . . . , fr by iterating the Euclidean algorithm in pairs
as indicated in Proposition 6.9. We have seen that 〈f1, . . . , fr〉 = 〈h〉.

(2) Divide g by h using the division algorithm. g ∈ 〈f1, . . . , fr〉 if and only if
the remainder of g on division by h is 0.

Example 6.10 (Euclidean algorithm in the integers). Find the gcd of 72 and 56.

72 = 56 + 16
56 = 3 · 16 + 8
16 = 2 · 8 + 0

so the gcd is 8. Notice we also get a way to write 8 as an integer linear combination
of 72 and 56: 8 = 56− 3 · 16 = 56− 3 · (72− 56) = 4 · 56− 3 · 72.

Example 6.11 (Euclidean algorithm for univariate polynomials). Find the GCD
of x5 − 1 and x3 − x.

x5 − 1 = (x3 − x)(x2 + 1) + (x− 1)
x3 − x = (x− 1)(x2 + x) + 0,

so the GCD is x− 1. Notice these computations also yield that x− 1 = (x5 − 1)−
(x3 − x)(x2 + 1), which explicitly expresses the fact that x− 1 ∈ 〈x5 − 1, x3 − x〉.

6.1. Field of fractions of an integral domain. We expand on Remark 4.7.
Recall an integral domain is a commutative ring without any zero divisors. We
have the following facts about integral domains:

(1) Any field is an integral domain.
(2) If R is an integral domain, then R[x] is an integral domain.
(3) If I is a prime ideal of R, then R/P is an integral domain.
(4) Any finite integral domain is a field.
(5) Let f(x) ∈ K[x]. If f is irreducible in K[x], then 〈f〉 is a prime ideal so

K[x]/〈f〉 is an integral domain.

Example 6.12. Consider the finite field F3 with three elements (for instance
Z/3Z). The polynomial x3 + 2x2 + 1 is irreducible since it does not have any
roots (just plug in x = 0, 1, 2 and notice the polynomial does not vanish). So
F3[x]/〈x3 + 2x2 + 1〉 is an integral domain. Notice that this integral domain has 27
elements: any polynomial of degree ≥ 3 can be reduced to a polynomial of the form
ax2 + bx+ c, and there are three choices for each of a, b, c. So F3[x]/〈x3 + 2x2 + 1〉
is a finite integral domain, and hence a field. So we can do all the operations that
we are used to doing for fields.

For instance, let’s find the row reduced echelon form of the matrix

M =

[
1 x2 1
0 x 2

]
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which we consider as having entries in the field F2[x]/〈x3 + 2x2 + 1〉. Subtracting
x times the second row from the first:[

1 0 1− 2x
0 x 2

]
Multiply the second row by the inverse of x, which is 2x2 + x:[

1 0 1− 2x
0 1 x2 + 2x

]
.

This is the row reduced echelon form of M .

7. Monomial Orders

Monomial orders allow a generalization of the division algorithm from the last
section.

Definition 7.1. A monomial order ≤ on the monomials of K[x1, . . . , xn] is a

• total order (every monomial can be compared to every other monomial)
• if m1,m2, n are monomials and m1 ≥ m2, then m1n ≥ m2n
• if n is a monomial and n 6= 1, then 1 < n (strict inequality)

The following examples illustrate three common monomial orders. The precise
definitions in terms of weight vectors is given in the section on monomial orders by
vectors.

Example 7.2 (Lexicographic order or Lex order). This order prioritizes earlier
variables. For example, in K[x, y, z], the set {1, x, y, z, x2, xy, xz, yz, y2, yz, z2} is
ordered from least to greatest in Lex order by:

1 < z < z2 < y < yz < y2 < x < xz < xy < x2

We may use <lex to clarify the use of Lex order.

Example 7.3 (Graded Lexicographic order or GLex order). This order first pri-
oritizes degree and then compares monomials of the same degree using Lex order.
The set {1, x, y, z, x2, xy, xz, yz, y2, yz, z2} is ordered from least to greatest in GLex
order by:

1 < z < y < x < z2 < yz < y2 < xz < xy < x2

Example 7.4 (Graded Reverse Lexicographic order or GRevLex order). This order
first prioritizes degree and then compares monomials of the same degree by reversing
the order of the variables and then reversing the Lex order on these (see the next sec-
tion for a more user-friendly definition!). The set {1, x, y, z, x2, xy, xz, yz, y2, yz, z2}
is ordered from least to greatest in GRevLex order by:

1 < z < y < x < z2 < yz < xz < y2 < xy < x2

7.1. Monomial orders by vectors. Let v1, . . . , vn ∈ Rn≥0 be linearly independent

vectors. Let xα, xβ be monomials in K[x1, . . . , xn], where α = (α1, . . . , αn), β =
(β1, . . . , βn) ∈ Zn≥0. Define xα > xβ if α · v1 > β · v1 or if α · v1 = β · v1 and
α · v2 > β · v2 or if α · v2 = β · v2 and α · v3 > β · v3, etc. A compact representation
for the monomial order is by a matrix whose columns are the vectors v1, . . . , vn.
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Example 7.5 (Lex order by vectors). Lexicographic order in three variables is
determined by 1 0 0

0 1 0
0 0 1


So xaybzc > xa

′
yb

′
zc

′
if and only if a > a′ or a = a′ and b > b′ or a = a′, b = b′,

and c > c′. In general Lexicographic order is encoded by the identity matrix:
1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1


Example 7.6 (Graded Lex by vectors). Graded Lexicographic order is encoded
by the following matrix: 

1 1 · · · 0
1 0 · · · 0
...

...
...

1 0 · · · 1
1 0 · · · 0


Example 7.7 (Graded Reverse Lex order by vectors). Graded Reverse Lexico-
graphic order is encoded by the matrix which has 1’s on and above the antidiagonal:

1 1 · · · 1
1 1 · · · 0
...

...
...

1 1 · · · 0
1 0 · · · 0


Example 7.8. Consider the polynomial ring K[x, y, z] and the vector v =

[
π e ln(2)

]
.

The entries of v are linearly independent over Q. This means that for any α, β ∈ Z3,
v · α 6= v · β. Hence v (by itself!) gives a monomial order on K[x, y, z]. This or-
der cannot be determined exactly by any three vectors v1, v2, v3 ∈ Z3

≥0, but it can
be approximated arbitrarily well by such vectors. For instace, take good rational
approximations to π, e, and ln(2) (you can obtain these by continued fractions, for
instance) and clear denominators.

There is a theorem (due to Robbiano) that every monomial order can be obtained
by weight vectors.

Theorem 7.9 (Robbiano). Every monomial order can be determined from an or-
dered list of vectors v1, . . . , vn ∈ Rn≥0 and can be approximated by an ordered list of
vectors v1, . . . , vn.

See Exercises 10 and 11 in Section 2.5 of Cox-Little-O’Shea, as well as the dis-
cussion after these exercises, for more discussion.

Example 7.10 (Product Order). Given a monomial order <1 on K[x1, . . . , xr] and
a monomial order <2 on K[y1, . . . , ys], you can produce a monomial order <1,2 on
K[x1, . . . , xr, y1, . . . , ys] as follows:

xα1yα2 > xβ1yβ2
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if and only if xα1 > xβ1 or xα1 = xβ1 and yα2 > yβ2 . This is a product order. If A
is an r × r matrix describing <1 and B is an s× s matrix describing <2, then the
matrix describing <1,2 is the block matrix:

[
A 0
0 B

]
.

8. Multivariate Division Algorithm

Recall that given polynomials f, g ∈ K[x], the division algorithm produces f =
Qg + R where R = 0 or deg(R) < deg(f). Our goal in this section is to give a
generalization of this to many variables using monomial orders. Here is how we
formulate the multivariate division algorithm: let f1, . . . , fr be an ordered list of
polynomials, and let g be another polynomial. The multivariate division algorithm
gives an expression

g = f1Q1 + f2Q2 + · · ·+ frQr +R,

where no term of R is divisible by a leading term of f1, . . . , fr. We illustrate the
algorithm with some examples and then formalize it.

Example 8.1. Use Lex order on K[x, y]. Divide x2y + xy2 + y2 by the list {f1 =
xy−1, f2 = y2−1}. It’s crucial to keep in mind the monomial order for the leading
terms!

Q1 : x+ y

Q2 : 1

xy − 1 √
x2y + xy2 + y2

y2 − 1

−(x2y − x)

xy2 + x+ y2

−(xy2 − y)

x+ y2 + y

−(y2 − 1)

x+ y + 1

The algorithm shows that Q1 = x+y,Q2 = 1, and R = x+y+1 so x2y+xy2+y2 =
(x+ y)(xy − 1) + (1)(y2 − 1) + x+ y + 1.
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Example 8.2. Reverse the order in the last example. Specifically, use Lex order
on K[x, y] but divide x2y + xy2 + y2 by the list {f1 = y2 − 1, f2 = xy − 1}.

Q1 : x+ 1

Q2 : x

y2 − 1 √
x2y + xy2 + y2

xy − 1

−(x2y − x)

xy2 + x+ y2

−(xy2 − x)

xy2 + x+ y2

−(xy2 − x)

2x+ y2

−(y2 − 1)

2x+ 1

The algorithm shows that Q1 = x+ 1, Q2 = x, and R = 2x+ 1, so x2y+xy2 +y2 =
(x+ 1)(y2 + 1) + (x)(xy − 1) + 2x+ 1.

The exact steps of this algorithm are as follows: start with a polynomial f and
an ordered sequence (f1, . . . , fr). Initialize Q1 = · · · = Qr = 0 and R = f . Starting
with the largest term of R (under the monomial order) see whether any term of R
is divisible by any of the lead terms of f1, . . . , fr (proceed in order!). If a term of R
is divible by a leadterm of some fi, update Qi as Qi = LT(R)/LT(fi) +Qi, update
R as R = R−LT(R)/LT(fi) · fi. Repeat these steps until no term of R is divisible
by any of the lead terms of the fi.

The termination of the algorithm depends on the well-ordering property : namely,
every subset of monomials has a least element under a monomial order (the proof
of this comes from Dickson’s Lemma and we will see it in the next section). Notice
that after every division step (under the horizontal lines), a term has been replaced
by terms which are smaller in the monomial order. Since we cannot have infinite
decreasing chains of monomials, the set of all terms resulting from the division
algorithm must be finite (i.e. the algorithm must terminate in a finite number of
steps).

9. Dickson’s Lemma

Definition 9.1. Let A ⊂ Zn be a subset of Zn and let I(A) = 〈xα : α ∈ A〉 be the
ideal of K[x1, . . . , xn] generated by the monomials with exponents from A. Then
I(A) is called a monomial ideal.

Lemma 9.2 (Dickson’s Lemma.). If I ⊂ K[x1, . . . , xn] is a monomial ideal, then
there is a finite set of monomials m1, . . . ,mk so that I(A) = 〈m1, . . . ,mk〉.

Proof. By induction on the number of variables. If n = 1, then a monomial ideal
has the form I(A) = 〈xn : n ∈ A〉 where A ⊂ Z. By the well-ordering property of Z,
A has a least element, say k. Then clearly xk | xn for every n ∈ A. So I(A) = 〈xk〉.

Now suppose n > 1 and write K[x1, . . . , xn−1, xn] = K[x1, . . . , xn−1, y]. If I is
a monomial ideal in K[x1, . . . , xn−1, y] then each monomial in I can be written in
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the form xαyk. Let

J = 〈xα | xαyk ∈ I for some k〉.
By the induction assumption, J = 〈m1, . . . ,mk〉 for some monomials m1, . . . ,mk ∈
K[x1, . . . , xn−1].

By definition of J there exist monomials in I of the form m1y
a1 , . . . ,mky

ak . Let
g = max{a1, . . . , ak}.

Let Ji = 〈xα | xαyi ∈ I〉 = 〈mi,1, . . . ,mi,ki〉 (we use the induction hypothesis
again) for integers i ≥ 0. Put Ii = 〈yimi,1, . . . , y

imi,ki〉.
Now we claim I = I0 + I1 + · · · + Ig. Suppose xαyk ∈ I. If k ≤ g then clearly

xαyk ∈ I0 + · · · + Ig. Suppose k > g. Then xα is divisible by some xβ ∈ Ji for
some i ≤ g (by the choice of g), hence xβyi ∈ I. But i ≤ g < k, so xβyi | xαyk,
and xαyk ∈ I0 + · · ·+ Ig. �

Definition 9.3. A total order of a set S is a well-ordering if every subset of S has
a least element.

Proposition 9.4. Let < be a total order on the monomials of K[x1, . . . , xn] satis-
fying m1 < m2 ⇒ nm1 < nm2. Then < is a well-ordering if and only if 1 is the
smallest monomial of K[x1, . . . , xn] under <.

Proof. Suppose < is a well-ordering. Then the set of all monomials has a smallest
element, call it m. If m < 1, then m2 < m, contradicting that m is the smallest
monomial. So 1 is the smallest element.

Now suppose 1 is the smallest monomial. Let A be a set of monomials of
K[x1, . . . , xn] and let I(A) be the ideal generated by A. By Dickson’s lemma,
I(A) = 〈m1, . . . ,mk〉. Re-ordering if necessary, we assume m1 < m2 < · · · < mk.
We claim that m1 is the smallest element of A. Let m be a monomial in A. Then
m ∈ I(A), so m is divisible by mi for some i = 1, . . . , k. Hence mi ≤ m, but
m1 ≤ mi. So m1 ≤ m. �

Corollary 9.5. If < is a monomial order then there are no infinite decreasing
sequences of monomials. In particular, the division algorithm terminates in a finite
number of steps.

10. The Hilbert basis theorem and Gröbner bases

Definition 10.1. Let < be a monomial order on monomials of K[x1, . . . , xn]. Let
I ⊂ K[x1, . . . , xn] be an ideal. The leading term ideal of I is

LT<(I) := {LT<(f) | f ∈ I},

the ideal generated by leading terms of all polynomials in I.

Remark 10.2. Notice that LT<(I) is a monomial ideal. By Dickson’s Lemma,
LT<(I) is finitely generated. Hence there are g1, . . . , gk ∈ I so that LT<(I) =
〈LT<(g1), . . . ,LT<(gk)〉.

Theorem 10.3 (Hilbert Basis Theorem). If I ⊂ K[x1, . . . , xn] is an ideal, then I
is finitely generated.

Proof. Pick any monomial order < and write LT<(I) = 〈LT<(g1), . . . ,LT<(gk)〉
as in the above remark. We claim that I = 〈g1, . . . , gk〉. To see this, take any f ∈ I
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and use the division algorithm to divide f by the ordered list (g1, . . . , gk). This
gives an expression

f = Q1g1 + · · ·+Qkgk +R,

where no term of R is divisible by a leading term of any g1, . . . , gk. Notice also
that R ∈ I since R = f − (Q1g1 + · · · + Qkgk). But if R 6= 0, then LT<(R) is
divisible by one of LT<(g1), . . . ,LT<(gk), since this is how we obtained g1, . . . , gk.
Thus R = 0 and f ∈ I. �

Definition 10.4. Let I ⊂ K[x1, . . . , xn] be an ideal and < a monomial order on
K[x1, . . . , xn]. A Gröbner basis for I is a finite collection of polynomials g1, . . . , gk ∈
I satisfying that

LT<(I) = 〈LT<(g1), . . . ,LT<(gk)〉.

Remark 10.5. From the proof of the Hilbert Basis theorem, if g1, . . . , gk ∈ I and
LT<(I) = 〈LT<(g1), . . . ,LT<(gk)〉, then I = 〈g1, . . . , gk〉. So a Gröbner basis of I
is a set of generators of I with the additional property that the leading terms of
the gi generate the lead term ideal of I.

Remark 10.6. By Dickson’s Lemma, Gröbner bases exist with respect to any
monomial order.

Remark 10.7. A Gröbner basis for I depends on the monomial order.

Definition 10.8. The ascending chain condition for ideals states that if I1 ⊆ I2 ⊆
I3 ⊆ · · · ⊆ Ik ⊆ · · · is an infinite nested ascending sequence of ideals, then there is
some N for which Ik = IN for k ≥ N . In other words, the sequence stabilizes.

Corollary 10.9. The polynomial ring K[x1, . . . , xn] has the ascending chain con-
dition (ACC) for ideals.

Proof. Given a nested sequence I1 ⊆ I2 ⊆ I3 ⊆ · · · ⊆ Ik ⊆ · · · , let I =
∞⋃
i=1

Ii. Then

I is an ideal (check this!). By the Hilbert basis theorem, I = 〈g1, . . . , gk〉 for some
g1, . . . , gk ∈ K[x1, . . . , xn]. There is some N ∈ N for which all of g1, . . . , gk ∈ IN .
For this choice of N , Ik = IN for all k ≥ N , so the sequence stabilizes. �

Corollary 10.10. If I ⊂ K[x1, . . . , xn] then V (I) = V (g1, . . . , gk), so if a set is
described as the zero locus of infinitely many polynomials, then it is actually the
zero locus of finitely many polynomials.

If we have a monomial order and we have polynomials f, g1, . . . , gk then the
division algorithm allows us to write f = g1Q1 + · · ·+ gkQk +R, where no term of
R is divisible by the leading terms of g1, . . . , gk.

Proposition 10.11. If g1, . . . , gk is a Gröbner basis for I = 〈g1, . . . , gk〉 then the
remainder R of f on division by g1, . . . , gk is unique (it does not depend on the
order in which g1, . . . , gk are listed). This remainder R is a normal form for f in
K[x1, . . . , xn]/I.

Proof. Suppose f = G1 + R1 = G2 + R2, where both G1, G2 ∈ I and R1, R2

both satisfy that no term is divisible by the leading terms of g1, . . . , gk. Then
R1 − R2 = G2 − G1 ∈ I. We claim that R1 − R2 = 0. Suppose not. Then the
leading term of R1 −R2 is in LT(I). Since g1, . . . , gk is a Gröbner basis, it follows
that the leading term of R1 −R2 must be divisible by the leading term of some gi.
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But this would imply that either R1 or R2 has a term divisible by the leading term
of gi. Hence R1 −R2 = 0. �

Corollary 10.12. Gröbner bases solve the ideal membership problem. In other
words, if g1, . . . , gk is a Gröbner basis for I = 〈g1, . . . , gk〉, then a polynomial f is
in I if and only if the remainder of f on division by g1, . . . , gk is zero.

11. Buchberger’s Algorithm

Let f, g ∈ K[x1, . . . , xn]. Pick a monomial order < on K[x1, . . . , xn]. We can
find monomials m1,m2 and field elements k1, k2 so that k1m1f and k2m2g have
the same leading term.

Example 11.1. Suppose f = 2x2 + 3y + 1, g = 5y2 + 7. Then we can take
m1 = y2,m2 = x2, k1 = 5, k2 = 2.

Definition 11.2. If f, g ∈ K[x1, . . . , xn] under a fixed monomial order <. The
S-polynomial of f and g is S(f, g) = k1m1f − k2m2g, where k1 is the coefficient of
the leading term of g, k2 is the coefficient of the leading term of f , and m1LM(f) =
m2LM(g) = LCM(LM(f),LM(g)), where LCM denotes least common multiple.

Proposition 11.3 (Buchberger’s criterion). Let I = 〈g1, . . . , gk〉. Then g1, . . . , gk
is a Gröbner basis of I if and only if the remainder of S(gi, gj) by g1, . . . , gk is zero
for every pair 1 ≤ i 6= j ≤ k.

Proof. One direction is easy: if g1, . . . , gk is a Gröbner basis, then S(gi, gj) ∈ I,
hence by Corollary 10.12 the remainder of S(gi, gj) under division by g1, . . . , gk is
zero.

Now suppose S(gi, gj) = g1Q1 + · · · + gkQk, with remainder zero. We need to
show that the leading terms of g1, . . . , gk generate LT(I). This is not difficult, but
it is a bit technical. See Section 2.6 of Cox, Little, and O’Shea for the proof. �

Proposition 11.4 (Buchberger’s Algorithm). Let I = 〈f1, . . . fs〉 ⊂ K[x1, . . . , xn],
with a fixed monomial order <. The following algorithm produces a Gröbner basis
for I with respect to <: for each pair fi, fj, compute the remainder of the S-
polynomial S(fi, fj) under division by f1, . . . , fs. If this remainder is non-zero, add
it to the generating set for I and repeat. When all remainder are zero, we have a
Gröbner basis for I, so we stop.

Proof. The stopping criterion is exactly Buchberger’s criterion, so it remains to
show that the algorithm terminates. At each step, the ideal generated by leading
terms of polynomials in the list increases strictly. Since we have an ascending
chain of ideals, it must stabilize at some point, meaning that at some point we
stop having new lead terms coming from S-polynomials (so all remainders of S-
polynomials must be zero). �

Definition 11.5. The polynomials g1, . . . , gk are a reduced Gröbner basis for I =
〈g1, . . . , gk〉 if the leading coefficient of each gi is 1 and no term of gi is divisible by
the leading term of any gj (j 6= i) for every i = 1, . . . , k.

Proposition 11.6. If I ⊂ K[x1, . . . , xn] is an ideal, then for any fixed monomial
order a reduced Gröbner basis for I is unique.

Proof. Exercise! �
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Example 11.7. Consider the ideal I = 〈x2, xy + y2〉 in K[x, y] in Lex order.
Compute S(x2, xy + y2) = yx2 − x(xy + y2) = −xy2. Now divide −xy2 by

x2, xy + y2. This gives a remainder of y3, which is non-zero, so we add it to the
list:

I = 〈x2, xy + y2, y3〉.

The S-polynomial of the first two clearly has a remainder of zero now. So now
compute S(x2, y3) = 0 and S(xy + y2, y3) = y2(xy + y2) − xy3 = y4, which has a
remainder of zero (since we now have y3).

By Buchberger’s criterion, x2, xy + y2, y3 is a Gröbner basis for I with respect
to Lex order. In fact, this is a reduced Gröbner basis.

Example 11.8. Let I = 〈x2+xy+y2+x+y+1, x2+2xy+3y2+4x+5y+6〉 ⊂ C[x, y].
The Gröbner basis with respect to GRevLex (Graded Reverse Lexicographic order)
is

g1 = 3y3 + 2y2 − 11x− 3y − 12
g2 = x2 − y2 − 2x− 3y − 4
g3 = xy + 2y2 + 3x+ 4y + 5

This is almost a reduced Gröbner basis (just divide each polynomials by its leading
coefficient). The leading term ideal of I is

LT(I) = 〈y3, x2, xy〉.

If f ∈ C[x, y] and we use the division algorithm to divide f by g1, g2, g3, then the
remainder will necessarily have the form a+ bx+ cy+dy2. It follows that C[x, y]/I
is a four-dimensional vector space over C with basis {1, x, y, y2}.

This means we can represent linear transformations from C[x, y]/I to itself as
matrices with this basis.

One natural way to get a linear transformation C[x, y]/I → C[x, y]/I is by
multiplication by some f ∈ C[x, y]. More precisely, Lf : C[x, y]/I → C[x, y]/I is
defined by r → f · r.

We find the matrix representing multiplication by x. We get the columns of
Lx with respect to the basis {1, x, y, y2} by multiplying each basis element by x
and then taking the remainder under division by the Gröbner basis. For instance
x · 1 = x and x ·x = x2 with remainder y2 + 2x+ 3y+ 4 gives the first two columns
of the following matrix (check that the last two columns are correct!):

Lx =


1 x y y2

1 0 4 −5 7
x 1 2 −3 5/3
y 0 3 −4 5
y2 0 1 −2 10/3

.
If we use Lex order instead, the Gröbner basis only has two polynomials

g1 = 11x− 3y3 − 2y2 + 3y + 12
g2 = 3y4 + 11y3 + 25y2 + 23y + 19
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so LTLex(I) = 〈x, y4〉 and the basis for C[x, y]/I from Lex order is {1, y, y2, y3}.
We get quite a simple matrix for Ly:

Ly =


1 y y2 y3

1 0 0 0 −19/2
y 1 0 0 −23/3
y2 0 1 0 −25/3
y3 0 0 1 −11/3

.
Notice that geometrically, the ideal I is defining 4 points (in this case over the
complex numbers!) - the intersection points of the two degree two curves defined
by the generators of I. The Gröbner basis in Lex order is really nice for finding the
solutions, because one of the polynomials only involves the variable y, and we can
at least approximate the roots of the degree four polynomial. For each of the roots
of g2, we can then use g1 to find what x should be, and its clear there’s only one
solution for x to g1 = 0 corresponding to a particular y-value.

12. Elimination Theory

Elimination theory encodes the algebraic counterpart of projection.

Example 12.1. The following issue arises in projections. Consider the variety
V (xy − 1) ⊂ R2. It’s projection onto the x-axis consists of everything except the
origin in R. However, I(R \ {0}) = 〈0〉 and V (I(R \ {0})) = R.

Hence the projection of an affine variety may not be an affine variety! Thus, if
we wish to stay in the land of affine varieties, the best we can do is to compute
the Zariski closure of the projection. This may consist of strictly more than the
projection itself, as the projection of V (xy − 1) onto the x-axis indicates.

Definition 12.2. Let I ⊂ K[x1, . . . , xn]. The `th elimination ideal is the ideal
I` = I ∩K[x`+1, . . . , xn] (0 ≤ ` ≤ n− 1).

Consider Lex order for K[x1, . . . , xn] with x1 > x2 > · · · > xn. If f ∈ K[x1, . . . , xn]
satisfies that LT(f) ∈ K[x`+1, . . . , xn], then f ∈ K[x`+1, . . . , xn].

Proposition 12.3. Let I ⊂ K[x1, . . . , xn]. Let G = {g1, . . . , gk} be a Gröbner basis
for I with respect to Lex order. Then G∩K[x`+1, . . . , xn] is a Gröbner basis for I`.

Proof. Exercise! This is much more straightforward than it may look at first. �

Example 12.4. In R2, consider the point (1, 3). The ideal of (1, 3) is

I({(1, 3)}) = 〈x− 1, y − 3〉.

This can be proved in several ways; one way is doing Taylor expansion at (1, 3).

Definition 12.5. Let I, J be ideals in K[x1, . . . , xn]. Let I = 〈f1, . . . fk〉 and
J = 〈g1, . . . , g`〉. Then IJ := 〈figj | 0 ≤ i ≤ k, 0 ≤ j ≤ `〉.

Lemma 12.6. V (IJ) = V (I) ∪ V (J).

Example 12.7. Consider {(0, 1, 2), (2,−1, 1), (2, 1, 3)} ⊂ R3. Let

I = 〈x, y − 1, z − 2〉〈x− 2, y + 1, z − 1〉〈x− 2, y − 1, z − 3〉.
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Then by Lemma 12.6, V (I) = {(0, 1, 2), (2,−1, 1), (2, 1, 3)}. A Gröbner basis for I
with respect to Lex order is

g1 = x− 2z2 + 8z − 8
g2 = y + z2 − 5z + 5
g3 = z3 − 6z2 + 11z − 6

By Proposition 12.3, I1 = 〈g2, g3〉 and I2 = 〈g3〉.
Notice that we can recover V (I) very easily from this Gröbner basis. Factoring

g3 gives g3 = (z − 1)(z − 2)(z − 3). Now substitute z = 1, 2, 3 into g1, g2 and solve
for x and y, respectively.

Example 12.8 (The `-elimination order of Bayer-Stillman). Let I ⊂ K[x1, . . . , xn].
We will describe an order such that LT(f) ∈ K[x`+1, . . . , xn]⇒ f ∈ K[x`+1, . . . , xn].
Let vi be the vector in Rn whose first i entries are 1 and all other entries are zero.
Then the monomial order using the weight vector v` first and then breaking ties us-
ing Graded Reverse Lexicographic order has this property (show this!). Notice that
the monomial order GRevLex is defined by the weight vectors vn, vn−1, . . . , v1, so we
can regard this monomial order as the monomial order v`, vn, . . . , v`−1, v`+1, . . . , v1,
where v` is moved to the front of the list.

Example 12.9 (`th elimination order). More generally, an `th elimination order
is a monomial order > on K[x1, . . . , xn] so that if LT(f) ∈ K[x`+1, . . . , x`] then
f ∈ K[x`+1, . . . , xn]. This is equivalent to saying that if G is a Gröbner basis
for an ideal I with respect to > then G ∩ K[x`+1, . . . , xn] is a Gröbner basis for
I` = I ∩K[x`+1, . . . , xn] (show this!). Proposition 12.3 shows that Lex order is an
`th elimination order for every `. Thus Lex order carries alot of information, which
indicates that it may be difficult to compute in general.

Example 12.10 (Minimal polynomials of algebraic numbers). The polynomial

p(x) = x2 − 2x − 5 has roots −1 ±
√

6; p(x) is the minimal polynomial of either

one of these roots. Likewise, the minimal polynomial of 3
√

7 is q(x) = x3 − 7. How

do you find the minimal polynomial of α = −1 +
√

6 + 3
√

7? It turns out that the
minimal polynomial of α is t6 + 6t5 − 3t4 − 66t3 − 27t2 − 144t− 342. This can be
shown using elimination theory.

We can do this by forming the ideal I = 〈x2 − 2x− 5, y3 − 7, t− (x+ y)〉 in the
polynomial ring Q[x, y, t] and eliminating the variables x and y from I; in other
words compute I2 = I ∩ K[t]. The ideal I2 is an ideal in K[t], thus it is principal.
The generator of this ideal is the minimal polynomial of α! Convince yourself this
is true.

The ideal I2 is computed in Macaulay2 by the command “eliminate(I, x, y)”.
Alternatively, the same result could be obtained by defining the ideal J = 〈x2 −
6, y3 − 7, t− (x+ y − 1)〉 and eliminating the variables x and y.

Remark 12.11 (Minimal polynomials of algebraic numbers). If r1, . . . , rk are al-
gebraic over Q with minimal polynomials F1, . . . , Fk ∈ Q[x]. Let G(x1, . . . , xk) =
G1(x1, . . . , xk)/G2(x1, . . . , xn) be a rational function in Q(x1, . . . , xk). Since r1, . . . , rk
live in the field Q, G(r1, . . . , rk) is an algebraic number as long as the denominator
doesn’t vanish, and we can determine its minimal polynomial.

Consider the field Q[x]/〈F1(x)〉, where F1(x) = xd + ad−1x
d−1 + · · ·+ a0. Then

1, x, x2, . . . , xd−1 is a basis for this field. In general, Q[x1, . . . , xk]/〈F1(x1), . . . , Fk(xk)〉
is isomorphic to the field Q(r1, . . . , rk).



20

We find the minimal polynomial of G(r1, . . . , rk) as follows:

• Define R = Q[x1, . . . , xk, Y ].
• Define I = 〈F1(x1), . . . , Fk(xk), G2(x1, . . . , xk)Y −G1(x1, . . . , xk)〉.
• Eliminate the variables x1, . . . , xk from I.
• The result is a principal ideal only in the variable Y - the generator of this

ideal is the minimal polynomial of G(r1, . . . , rk).

We can also introduce symbolic coefficients in the function G(x1, . . . , xk) to get
a ‘universal’ expression for the minimal polynomial of algebraic numbers with a
prescribed form.

For instance, take α =
√

2, β =
√

3. We can get a ‘universal’ minimal polynomial
for algebraic numbers of the form a + bα + cβ + dαβ (notice any element of the
field Q(α1, α2) can be expressed in this form). We can do this as follows:

• Define K = frac(Q[a, b, c, d])
• Define R = K[x1, x2, Y ]
• Define I = 〈x21 − 2, x22 − 3, Y − (a+ bx1 + cx2 + dx1x2)〉
• Eliminate the variables x1, x2 to get the minimal polynomial of a+bα+cβ+
dαβ. The coefficients of this minimal polynomial will be rational functions
in a, b, c, d.

Example 12.12 (Symmetric polynomials). The fundamental theorem of symmet-
ric polynomials in K[x1, . . . , xn] states that any symmetric polynomial can be writ-
ten as a polynomial in the elementary symmetric polynomials. Let’s consider a
concrete example. If n = 3 then this theorem says that any symmetric polyno-
mial in the variables x1, x2, x3 can be written as a polynomial in the elementary
symmetric functions σ1 = x1 + x2 + x3, σ2 = x1x2 + x1x3 + x2x3, σ3 = x1x2x3.

For example, the power sum x41 + x42 + x43 = σ4
1 − 4σ2

1σ2 + 2σ2
2 + 4σ1σ3. How

would we compute this? Again, we can do it using elimination! First, we consider
the polynomial ring K[x1, x2, x3, σ1, σ2, σ3] and we form the ideal

I = 〈x41 + x42 + x43, σ1 − (x1 + x2 + x3), σ2 − (x1x2 + x1x3 + x2x3), σ3 − x1x2x3〉.
Then we eliminate the variables x1, x2, x3 from this ideal. In other words, we
compute I3 = I ∩ K[σ1, σ2, σ3]. The expression σ4

1 − 4σ2
1σ2 + 2σ2

2 + 4σ1σ3 should
be in I3. In fact I3 is a principal ideal generated by this polynomial!

Remark 12.13. In general if f(x) = xd + ad−1x
d−1 + · · ·+ a0 which we consider

as having n roots r1, . . . , rd, then

f(x) = (x− r1)(x− r2) · · · (x− rd)
= xd − σ1(r1, . . . , rd)x

d−1 + · · ·+ (−1)dσd(r1, . . . , rd),

so ai = (−1)iσd−i(r1, . . . , rd) and i = 1, . . . , d. The polynomials σ1, . . . , σd are the
elementary symmetric polynomials. Any symmetric polynomial H ∈ K[x1, . . . , xd]
can be written as a polynomial expression in the elementary symmetric polynomials.

Example 12.14. Building off the previous example, consider the polynomial f(x) =
x3 + ax2 + bx+ c with roots r1, r2, and r3. Recall that

f(x) = (x− r1)(x− r2)(x− r3) = x3 − σ1x2 + σ2x+ σ3,

where σ1 = r1 + r2 + r3, σ2 = r1r2 + r1r3 + r2r3, and σ3 = r1r2r3. The fundamental
theorem of symmetric functions tells us that any expression which is symmetric
in the roots can be written as a polynomial in the coefficients of f(x)! Moreover
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we can find these polynomials by elimination. For instance, one such expression is
the discriminant of f(x), which is defined as (r1 − r2)2(r1 − r3)2(r2 − r3)2. This is
symmetric in the roots, hence we can express it as a polynomial in the coefficients
of f(x). See if you can compute this using Macaulay2.

Remark 12.15. Many more such examples can be found in the book Algorithms
in Invariant Theory by Bernd Sturmfels.

Example 12.16 (Implicitization: finding equations for the image of a map). The
twisted cubic is the image of the map φ : R → R3 defined by φ(t) = (t, t2, t3). We
can find equations for the image of this map as follows.

Define the ideal I = 〈x−t, y−t2, z−t3〉 in the ring Q[t, x, y, z]. Any polynomial in
x, y, z which vanishes on the image of φ will be in the elimination ideal I∩Q[x, y, z].
Some differences can arise by using different term orders. For instance, if we use
Lex order with x > y > z > t then a Gröbner basis for I is

GBLex(I) = {y3 − z2, xz − y2, xy − z, x2 − y, t− x}
However, if we use the Bayer-Stillman 1-elimination order we get:

GBBS1(I) = {y2 − xz, xy − z, x2 − y, t− x}

Definition 12.17. Let I, J ⊂ K[x1, . . . , xn] and F ∈ K[x1, . . . , xn]. Then the
intersection of I and J is I ∩ J = {f | f ∈ I and f ∈ J}. The ideal quotient of I
by F is I : F = 〈g | gF ∈ I〉. The ideal quotient of I by J is I : J = 〈g | gF ∈
I for all F ∈ J〉.

Exercise: Prove that if I, J are ideals, then so are I ∩ J and I : J .

Example 12.18. In Z, 〈10〉 : 〈2〉 = 〈5〉 and 〈10〉 : 〈3〉 = 〈10〉.

We would like to be able to compute all of the ideals in Definition 12.17. Elimi-
nation theory allows us to do this as well.

Proposition 12.19. If I = 〈f1, . . . , fk〉, J = 〈g1, . . . , g`〉 ⊂ K[x1, . . . , xn], then
we can compute I ∩ J using elimination theory as follows. First, introduce a new
variable t and define the ideal

K = 〈f1t, . . . , fkt, g1(1− t), . . . , g`(1− t)〉 ⊂ K[t, x1, . . . , xn].

Then K ∩K[x1, . . . , xn] = I ∩ J .

Proof. Exercise! �

Proposition 12.20. Suppose W1,W2 ⊂ Cn. Then I(W1 ∪W2) = I(W1) ∩ I(W2).
In particular we can find the ideal of the union of two affine varieties given the
ideals of the affine varieties.

Proposition 12.21. If I is an ideal and F is a polynomial, we can compute I : F
as follows.

• Compute I ∩ 〈F 〉 using Proposition 12.19.
• The previous step will yield a generating set of I∩〈F 〉 of the form I∩〈F 〉 =
〈g1F, . . . , gkF 〉. So I : F = 〈g1, . . . , gk〉.

Proposition 12.22. If I, J are ideals and J = 〈h1, . . . , hk〉, then

I : J = I : h1 ∩ · · · ∩ I : hk.

These can be computed using Propositions 12.21 and 12.19.
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Exercise: If J = 〈F1, . . . , Fr〉, then I : J = (I : F1) ∩ (I : F2) ∩ · · · ∩ (I : Fr).

Definition 12.23 (Saturation). Suppose I, J are ideals. Then

I : J ⊂ I : J2 ⊂ I : J3 ⊂ · · · I : Jn ⊂ · · ·
This is an ascending chain of ideals, so it must stabilize. The saturation of I with
respect to J (written I : J∞) is precisely this stabilized ideal, namely

I : J∞ =
⋃
i≥1

I : J i

Proposition 12.24. Let W1,W2 ⊂ Cn. Then I(W1) : I(W2)∞ = I(W1 \W2).

One way to compute saturation is to compute the ideals I : J, I : J2, . . . until
the ideals stabilize. The following proposition gives a shortcut.

Proposition 12.25. If I ⊂ K[x1, . . . , xn] is an ideal and F is a polynomial, intro-
duce a new variable y. Then I : F∞ can be computed as

I : F∞ = (I + 〈1− Fy〉) ∩K[x1, . . . , xn, y].

Example 12.26. Notice 900 = 302 = 223252. In Z, 〈900〉 : 2∞ = 〈225〉, while
〈900〉 : 6∞ = 〈25〉.
Example 12.27 (Twisted cubic). Consider the map φ : R → R3 given by the
parametrization x = t, y = t2, z = t3. We would like to find equations in x, y, z that
vanish on the image of φ. Equivalently, we would like to find the Zariski closure of
the image of φ. To do this using elimination, set up the polynomial ring R[x, y, z, t]
and the ideal I = 〈x − t, y − t2, z − t3〉. Then eliminate t from the ideal I. The
result is several equations involving only x, y, and z which vanish on the image of
φ. They define the Zariski closure of the image.

Example 12.28 (Rational parametrization). Suppose a parametrization is given
using rational functions, for instance suppose a map φ : R → R3 is given by
x = f1(t)/g1(t), y = f2(t)/g2(t), z = f3(t)/g3(t). The main point is that we have to
avoid values of t for which the denominators vanish. If W = V (g1, g2, g3), then we
really are trying to compute the Zariski closure of φ(R \W ).

Theorem 12.29 (Rational implicitization). If φ : Kn → Km is given by a ra-

tional map xi = fi(t1,...,tn)
gi(t1,...,tn)

for i = 1, . . . ,m, then the Zariski closure of φ(Kn \
V (g1, . . . , gm)) is V (I) where

I = 〈g1x1 − f1, g2x2 − f2, . . . , gmxm − fm, 1− (g1g2 · · · gm)y〉 ∩K[x1, . . . , xn]

Example 12.30. [4-bar Linkage] Consider the mechanism pictured in Figure 1,
where the vertices (0, 0) and (s, 0) and the bar lengths r1, r2, r3, r4, r5 are fixed
but the bars are allowed to swivel about their connecting vertices. We would like
to determine an equation for the curve traced out by the tip of the triangle with
coordinates (x, y) - this is called the coupler curve of the linkage. We can do this
as follows:

• Define a polynomial ring Q[x, y, a, b, c, d] in the coordinates of these vertices.
• Define an ideal I encoding the relationships between the coordinates given

by the bar lengths. Namely I is generated by

a2 + b2 − r21 (c− s)2 + d2 − r22
(c− a)2 + (d− b)2 − r23 (x− a)2 + (y − b)2 − r24
(x− c)2 + (y − d)2 − r25
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• Then eliminate the variables a, b, c, d - this will give a principal ideal gen-
erated by a single polynomial in s and t. This polynomial is the equation
of the coupler curve of the 4-bar linkage.

(0, 0)

r1

(a, b)

r3 (c, d)

r2

(s, 0)

r4

(x, y)

r5

Figure 1. 4-bar linkage for Example 12.30

Example 12.31 (Trigonometric Roses). It’s not immediate that the following ex-
amples parametrized by trigonometric functions are algebraic varieties, but they
are. For example, if r = sin(2θ) = 2 sin(θ) cos(θ), then we introduce new variables
s = sin(θ), c = cos(θ) and define the ideal

I = 〈r − 2sc, s2 + c2 − 1, x− rc, y − rs, x2 + y2 − r2〉 ⊂ K[x, y, r, s, c].

Then eliminate r, s, c to get an equation in x and y. In general, we can do the same
with parametrizations of the form r = cos(n/dθ) for fixed n, d ∈ N. Notice

(cos(θ) + i sin(θ))n = ein = (ei(n/d)θ)d = (cos((n/d)θ) + i sin((n/d)θ))n.

Now set s = sin(θ), c = cos(θ), a = cos((n/d)θ), b = sin((n/d)θ). We can put
the relations coming from Euler’s formula into the ideal I by introducing another
variable i to simulate the complex number i, giving the ideal

I = 〈r − a, s2 + c2 − 1, x− rc, y − rs, x2 + y2 − r2, i2 + 1, (c+ is)n − (a+ ib)d〉

inside the polynomial ring Q[x, y, r, s, c, a, b, i]. Then eliminate all variables except
x and y to get the equation of the curve. (Notice there are seven equations in
eight variables, so you expect that each of these equations cuts down the dimension
by one, getting to a curve - to prove this rigorously, we would need to show that
these seven equations form something called a regular sequence in commutative
algebra). If we believe this equation defines a curve in eight dimensional space,
then projecting to the x-y plane should produce a curve in the x-y plane.

13. Algebra-Geometry Dictionary

Theorem 13.1 (Hilbert’s Weak Nullstellensatz). Let K be an algebraically closed
field and I ⊂ K[x1, . . . , xn] be an ideal. Then V (I) = ∅ if and only if 1 ∈ I.
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Remark 13.2. The Weak Nullstellensatz is a generalization of the fundamental
theorem of algebra - every non-constant polynomial over an algebraically closed
field has a root.

Proof. One direction is easy: if 1 ∈ I then 1 does not vanish anywhere. So V (I) = ∅.
See Section 1 of Ch. 4 of Cox-Little-O’Shea for a proof of the difficult direction of
this result. �

Theorem 13.3 (Hilbert’s Nullstellensatz). Let K be an algebraically closed field,
and J ⊂ K[x1, . . . , xn] an ideal. Then f ∈ I(V (J)) if and only if fk ∈ J for some
k ∈ N.

Proof. If fk ∈ J for some k ∈ N, then it is clear that f vanishes on V (J), hence
f ∈ I(V (J)). Let J = 〈f1, . . . , fk〉 ⊂ K[x1, . . . , xn] and suppose f ∈ I(V (J)), i.e. f

vanishes on V (J) = V (f1, . . . , fk)〉. Let J̃ = 〈f1, . . . , fk, 1− yf〉 ⊂ K[x1, . . . , xn, y].

Then V (J̃) = ∅ (if f1, . . . , fk all vanish, then so does f since f ∈ I(V (J)), hence

1 − yf = 1). By the weak Nullstellensatz, 1 ∈ J̃ so there exist polynomials
g1, . . . , gk+1 ∈ K[x1, . . . , xn, y] so that

1 = g1(x1, . . . , xn, y)f1 + g2(x1, . . . , xn, y)f2 + · · ·
+ gk(x1, . . . , xn, y)fk + gk+1(x1, . . . , xn)(1− yf).

Now evaluate at y = 1/f to get:

1 = g1(x1, . . . , xn, 1/f)f1 + g2(x1, . . . , xn, 1/f)f2 + · · ·+ gk(x1, . . . , xn, 1/f)fk.

We can clear denominators in this expression by multiplying by a high enough
power of f on both sides, say fm. This yields

fm = h1(x1, . . . , xn)f1 + · · ·+ hk(x1, . . . , xn)fk,

where h1, . . . , hk are polynomials. Hence fm ∈ J . �

Definition 13.4. Let I ⊂ K[x1, . . . , xn] be an ideal. The radical of I, denoted
√
I,

is the ideal {f ∈ K[x1, . . . , xn] : fm ∈ I for some m ∈ N}. If
√
I = I then I is

called a radical ideal.

Proposition 13.5. If I is an ideal, then
√
I is an ideal.

Proof. If f ∈
√
I then gf ∈

√
I for any g ∈ K[x1, . . . , xn] (clear). If f, g ∈

√
I then

f + g ∈
√
I. There exists an N so that fN ∈ I and gN ∈ I. Then every term in

the expansion of (f + g)2N−1 is either divisible by fN or by gN , so (f + g)2N−1 ∈ I
so f + g ∈

√
I. �

Example 13.6. In Z,
√
〈12〉 = 〈6〉. In K[x],

√
〈x2〉 = 〈x〉. In K[x, y],

√
〈x2, xy, y2〉 =

〈x, y〉.

Proposition 13.7. If I is an ideal then
√
I is a radical ideal.

Proposition 13.8. If K is algebraically closed and I ⊂ K[x1, . . . , xn].

Given an ideal I ⊂ K[x1, . . . , xn], here are some natural questions:

(1) If f ∈ K[x1, . . . , xn], can we tell if f ∈
√
I?

(2) Can we tell if I =
√
I?

(3) More generally, can we find
√
I?
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Remark 13.9. The first question is quite straightforward to answer, while the last
question was not answered satisfactorially until the 1990s.

Proposition 13.10. Let K be an algebraically closed field. Suppose I = 〈g1, . . . , gk〉.
Then f ∈

√
I ⇔ 1 ∈ 〈g1, . . . , gk, fy − 1〉 ⊂ K[x1, . . . , xn, y].

Proof. First, suppose fm ∈ I. Then 1 = ymfm + (1 − ymfm) = ymfm + (1 −
yf)(1 + yf + y2f2 + · · ·+ ym−1fm−1) ∈ I+ 〈1− yf〉. Conversely, if 1 ∈ I+ 〈1− yf〉
then V (I) = ∅ so fm ∈ I for some I by the Nullstellensatz. �

Theorem 13.11 (Hilbert’s Strong Nullstellensatz). Let K be an algebraically closed

field. Let J ⊂ K[x1, . . . , xn]. Then
√
J = V (I(J)).

Let I denote the set of all ideals in K[x1, . . . , xn], where K is algebraically closed.

We define an equivalence relation by I ∼ J if and only if
√
I =
√
J . Then I/ ∼ is

in one to one correspondence with the varieties in Kn.

Definition 13.12. A variety V is said to be irreducible if, whenever we can write
V = V1 ∪ V2 for varieties V1, V2, then V = V1 or V = V2.

Definition 13.13. Let I ⊂ K[x1, . . . , xn] be an ideal. I is a prime ideal if fg ∈
I ⇒ f ∈ Iorg ∈ I.

Definition 13.14. I ⊂ K[x1, . . . , xn] is a primary ideal if fg ∈ I implies that f ∈ I
or gk ∈ I for some k ∈ N.

Remark 13.15. In the ring Z, the radical ideals are the ones generated by square-
free integers. Equivalently, the radical ideals are those which can be written as an
intersection of prime ideals (generated by prime numbers). We will see that radical
ideals in polynomial rings actually satisfy the same property: radical ideals are
those which can be written as intersections of prime ideals. Primary ideals in Z
are generated by powers of primes. Notice that every ideal in Z is an intersection
of primary ideals (if n = pa11 · · · p

nk

k then 〈n〉 = 〈pa11 〈∩ · · · ∩ 〈p
ak
k 〉). The analog of

this fact in polynomial rings is primary decomposition - every ideal can be written
as an intersection of primary ideals.

Example 13.16. In K[x], 〈x〉 is prime and 〈xk〉 is primary but not prime for k > 1.
Notice the radical of 〈xk〉 is 〈x〉, a prime ideal. In K[x, y], 〈x, y〉 is prime. The ideals
〈x2, y〉, 〈x2, y2〉, 〈x2, xy, y2〉 are all primary but not prime. Notice the radicals of all
these ideals is the prime ideal 〈x, y〉.

Remark 13.17. Any polynomial f ∈ 〈x2, xy, y2〉 is singular at (0, 0). Explain
why!

Proposition 13.18. If Q is a primary ideal, then
√
Q is a prime ideal.

Proof. Suppose fg ∈
√
Q and f /∈

√
Q. We need to show that g ∈

√
Q. Then

(fg)k ∈ Q. Since fk /∈ Q, it follows that gk ∈ Q (since Q is primary). Hence
g ∈
√
Q. It follows that

√
Q is prime. �

Definition 13.19. An ideal I ⊂ K[x1, . . . , xn] is maximal if, whenever J is an
ideal satisfying I ⊂ J and I 6= J , we have J = K[x1, . . . , xn].

Proposition 13.20. If K is an algebraically closed field then maximal ideals in
K[x1, . . . , xn] are always of the form

〈x1 − a1, . . . , xn − an〉
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for some a1, . . . , an ∈ K. The converse is true over any field. That is, ideals of the
form

〈x1 − a1, . . . , xn − an〉
for some a1, . . . , an ∈ K, are always maximal.

Corollary 13.21. Over an algebraically closed field, maximal ideals of K[x1, . . . , xn]
are in one-to-one correspondence with points of Kn.

Remark 13.22. If K is not algebraically closed, then there will always be maximal
ideals of K[x1, . . . , xn] that are not of the form

〈x1 − a1, . . . , xn − an〉
for some a1, . . . , an ∈ K. For instance, take irreducible polynomials f1(x1), . . . , fn(xn)
of degree larger than one. Then

〈f1(x1), . . . , fn(xn)〉
is a maximal ideal.

A natural question:

(1) Given an ideal, can we tell if it is prime?
(2) Given a radical ideal, can we find the prime ideals which we intersect to

form the radical ideal?

Lemma 13.23. We have the following statements for varieties and their associated
ideals.

(1) If V1 ⊂ V2 is a containment of varieties, then I(V2) ⊂ I(V1).
(2) If I1 ⊂ I2 then V (I2) ⊂ V (I1).
(3) V (I + J) = V (I) ∩ V (J)
(4) V (IJ) = V (I ∩ J) = V (I) ∪ V (J)

(5) V (I : J∞) = V (I) \ V (J)
(6) I(V ) : I(W ) = I(V \W )

(7) I(V ∪W ) = I(V ) ∩ I(W ) =
√
I(V )I(W )

(8) I(V ∩W ) ⊇ I(V ) + I(W )

(9)
√
I : J∞ =

√
I : J .

Remark 13.24. The equality (5) is related closely to Proposition 12.25.

Remark 13.25. The bar over V (I) \ V (J) in (5) denotes taking Zariski closure,
that is the smallest variety containing V (I) \ V (J).

Proposition 13.26.
√
I ∩ J =

√
I ∩
√
J

Proof. Exercise! �

We now relate prime ideals (Definition 13.13) and irreducible varieties (Defin-
tion 13.12).

Lemma 13.27. If P is a prime ideal and I, J are ideals satisfying IJ ⊂ P . Then
either I ⊂ P or J ⊂ P .

Proof. Suppose J 6⊂ P . Then there is some g ∈ J so that g /∈ P . For all f ∈ I,
fg ∈ P . Since P is a prime ideal and g /∈ P , we must have f ∈ P for all f ∈ I, so
I ⊂ P . �

Theorem 13.28. A variety V is irreducible if and only if I(V ) is a prime ideal.



27

Proof. Suppose V is irreducible. If fg ∈ I(V ), we need to show that f ∈ I(V )
or g ∈ I(V ). Since fg ∈ I(V ) implies V ⊂ V (fg) = V (f) ∪ V (g), we have
V = (V ∩ V (f)) ∪ (V ∩ V (g)). Since V is irreducible, either V ∩ V (f) = V or
V ∩ V (g) = V . If V ∩ V (f) = V then f ∈ I(V ), while if V ∩ V (g) = V then
g ∈ I(V ). So I(V ) is prime.

Now suppose I(V ) is a prime ideal, and suppose that V = V1 ∪ V2. Then
I(V1)I(V2) ⊂ I(V1 ∪ V2) = I(V1) ∩ I(V2) ⊂ I(V ). Since I(V ) is a prime ideal,
either I(V1) ⊂ I(V ) or I(V2) ⊂ I(V ) by Lemma 13.27. In the first case, V ⊂ V1 so
V = V1, while in the second case V ⊂ V2 so V = V2. �

Corollary 13.29. If K is algebraically closed then there is a one-to-one correspon-
dence between prime ideals and irreducible varieties.

Lemma 13.30. If I is a prime ideal then I is radical.

Proof. Exercise! �

Proposition 13.31. If I is a maximal ideal then I is a prime ideal.

Proof. Suppose fg ∈ I and f /∈ I. Then (I, f) = K[x1, . . . , xn] since I is maximal.
So 1 ∈ 〈I, f〉 ⇒ 1 = A+ fB where A ∈ I and B ∈ K[x1, . . . , xn]. Multiplying both
sides by g we get g = Ag + fgB. Since fg ∈ I and A ∈ I, we get g ∈ I. �

Proposition 13.32. If K is an infinite field and if V is the Zariski closure of the
image of a polynomial map from Km to Kn then V is irreducible.

Proof. Suppose the map is given by F (t1, . . . , tm) = (f1(t1, . . . , tm), . . . , fn(t1, . . . , tm)).
This gives a map of polynomial rings φF : K[x1, . . . , xn] → K[t1, . . . , tm] by pull-
back: φF (g) = g◦F , namely φF (g(x1, . . . , xn)) = g(f1(t1, . . . , tm), . . . , fn(t1, . . . , tm)).
Then I(V ) = ker(φF ) = {g ∈ K[x1, . . . , xn] : g ◦ F = 0}. It thus suffices to show
that ker(φF ) is prime (exercise!). �

Definition 13.33. The descending chain condition on varieties states that any
descending chain

V1 ⊃ V2 ⊃ · · · ⊃ Vk ⊃ · · ·
stabilizes. That is,

∩∞i=1Vi = VN

for any N large enough.

Proposition 13.34. Varieties satisfy the descending chain condition.

Proof. This follows immediately from the ascending chain condition for ideals. �

Theorem 13.35. A variety V can be written as a finite union of irreducible vari-
eties.

Proof. If V is not irreducible, write V = V1∪V2 where V1, V2 are properly contained
in V . Apply the same reasoning to V1 and V2. Iterating we obtain a binary
tree. Each chain in the binary tree must stabilize because of the descending chain
condition. In the end we obtain V as a finite union of irreducible varieties. �

Definition 13.36. A decomposition V = V1 ∪ · · ·Vk with V1, . . . , Vk irreducible is
called minimal if Vi 6⊂ Vj for every pair 1 ≤ i, j ≤ k.
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Proposition 13.37. Every variety has a minimal decomposition

V = V1 ∪ · · · ∪ Vk
where V1, . . . , Vk are irreducible. Furthermore, this decomposition is unique (up to
re-ordering).

Proof. The existence of a minimal decomposition follows from trimming any rep-
resentation coming from Theorem 13.35.

Suppose V = V1∪· · ·∪Va and V = V ′1∪· · ·∪V ′a are two minimal decompositions.
We must show they are equal up to re-ordering.

Notice V1 = V1 ∩ V = V1 ∩ (V ′1 ∪ · · · ∪ V ′a) = (V1 ∩ V ′1) ∪ · · · (V1 ∩ V ′a). But V1
is irreducible so V1 = V1 ∩ V ′` ⊂ V ′` for some `. Applying the same argument to
V ′` , we get V ′` ⊂ Vj for some j, yielding V1 ⊂ V ′` ⊂ Vj . Minimality then yields that
Vj = V1 so V1 = V ′` . Repeating this argument yields that the two decompositions
are equal up to re-ordering. �

Theorem 13.38. If K is algebraically closed then every radical ideal, I, has a
unique decomposition I = P1 ∩ · · · ∩ Pa with Pi prime and satisfying that Pi 6⊂ Pj
if i 6= j.

Proof. Use the correspondence between irreducible varieties and prime ideals, and
Proposition 13.37. �

We now extend Theorem 13.38 to arbitrary ideals. Recall the definition of a
primary ideal from Definition 13.14.

Proposition 13.39. If I is primary then
√
I is prime.

Definition 13.40. If I is a primary ideal and
√
I = P (a prime) then we say I is

P -primary.

Example 13.41. If
√
I = P , where P is a prime, it is not necessarily true that

I is primary. Take I = 〈x2, xy〉 = 〈x〉 ∩ 〈x〉 ∩ 〈x2, y〉. Then I is not primary but√
I = 〈x, y〉.

Definition 13.42. An ideal I is irreducible if whenever I = I1 ∩ I2 for ideals I1, I2
we have I = I1 or I = I2.

Theorem 13.43 (Noether-Lasker, part 1). If I is an ideal, then I can be written
as a finite intersection of primary ideals.

Proof. Here are the basic steps.

(1) Show that if I is irreducible then I is primary.
(2) Use the ascending chain condition to get finiteness.

See Cox-Little-O’Shea for details. �

Example 13.44. If I is primary, I is not necessarily irreducible. Consider

I = 〈x2, y〉 ∩ 〈x, y2〉 = 〈x2, xy, y2〉.
Both 〈x2, y〉 and 〈x, y2〉 are 〈x, y〉-primary, so 〈x2, xy, y2〉 is 〈x, y〉-primary. But
clearly 〈x2, xy, y2〉 is not irreducible.

Definition 13.45. If I = Q1 ∩Q2 ∩ · · · ∩Qk where Q1, . . . , Qk are primary, then
this is called a primary decomposition of I. If in addition Qi 6⊂ ∩j 6=iQj then this is
a minimal primary decomposition.
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Theorem 13.46 (Noether-Lasker, part 2). Every ideal I has a minimal primary
decomposition I = Q1 ∩ Q2 ∩ · · · ∩ Qk and the set of primes {

√
Q1, . . . ,

√
Qk} is

unique.

Proof. See Cox-Little-O’Shea. �

Definition 13.47. Suppose I is an ideal with minimal primary decomposition
I = Q1 ∩ · · · ∩ Qk. The set of primes {P1 =

√
Q1, . . . , Pk =

√
Qk} are called the

associated primes of I.

Example 13.48. Let I = 〈x2, xy〉 ⊂ K[x, y]. Then I = 〈x〉 ∩ 〈x2, y〉. We have
Q1 = 〈x〉 and Q2 = 〈x2, y〉. This is a minimal primary decomposition of I. Notice
that

〈x2, xy〉 = 〈x〉 ∩ 〈x2, xy, y2〉,
and this is different from the previous primary decomposition, but it is still minimal.
This illustrates that minimal primary decomposition is not unique! However, the
set of associated primes is unique. Notice P1 = 〈x〉 and P2 = 〈x, y〉 =

√
〈x2, xy〉 =√

〈x2, xy, y2〉.

Definition 13.49. The minimal associated primes of an ideal I are the associated
primes of

√
I.

Remark 13.50. Equivalently, the minimal associated primes of an ideal I are the
associated primes of I which are minimal under inclusion.

Example 13.51. Let I = 〈x2, xy〉 as in Example 13.48. Then
√
I = 〈x〉, which

is prime. So the minimal associated primes of I consist of just {〈x〉}, while the
associated primes are {〈x〉, 〈x, y〉}.

14. Coordinate rings of varieties

Let V ⊂ Km and W ⊂ Kn be varieties. Consider a polynomial map φ =
(f1, . . . , fn) : Km → Kn where f1, . . . , fn ∈ K[t1, . . . , tm]. This polynomial map
defines a map φ : V →W if, for every p ∈ V , F (p) = (f1(p), . . . , fn(p)) ∈W .

Definition 14.1. A map φ : V → W between affine varieties as above is called a
regular map.

Given an affine variety V ⊂ Km, a regular map φ : V → K is determined by
a single polynomial f(t1, . . . , tm) ∈ K[t1, . . . , tm]. The map is given by evaluation:
φ(p) = f(p).

Proposition 14.2. Given an affine variety V ⊂ Km, the set of all regular maps
φ : V → K is a ring, and it is isomorphic to K[t1, . . . , tm]/I(V ).

Proof. Write Reg(V,K) for the set of all regular maps from V to K. This is a ring
under pointwise multiplication and addition. We define a map from K[t1, . . . , tm]→
Reg(V,K) by f → φf , where φf is evaluation of f on V . This is a ring homomor-
phism since φf+f ′ = φf + φf ′ and φff ′ = φfφf ′ . The kernel of this map is clearly
I(V ), the ideal of polynomials vanishing on V . The conclusion follows. �

Definition 14.3. If V ⊂ Km is an affine variety, the coordinate ring of V or
ring of regular functions on V is denoted by K[V ] and is defined as K[V ] :=
K[t1, . . . , tm]/I(V ).
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Definition 14.4. If R,S are commutative rings with identity then a map φ : R→
S is a homomorphism if φ(r1 + r2) = φ(r1) + φ(r2), φ(r1r2) = φ(r1)φ(r2), and
φ(1R) = 1S . The homomorphism is an isomorphism if φ is one-to-one and onto.

Proposition 14.5. Let V ⊂ Km be an affine variety. The following are equivalent:

(1) V is irreducible.
(2) I(V ) is a prime ideal.
(3) K[V ] is an integral domain.

Proof. Earlier we saw that V is irreducible if and only if I(V ) is a prime ideal.
So it remains to show that I(V ) is a prime ideal if and only if K[V ] is an integral
domain. Complete this as an exercise! �

Here are some basic facts about quotients of polynomial rings by ideals.

Proposition 14.6. Suppose R = K[x1, . . . , xn], and I ⊂ R is an ideal. Then

(1) R/I is a commutative ring.
(2) Ideals in R/I correspond to ideals in R that contain I.
(3) Ideals in R/I are finitely generated.

Lemma 14.7. Given a regular map of affine varieties φ : V → W , we get a map
φ∗ : K[W ]→ K[V ] by f → f ◦ φ. The map φ∗ satisfies:

(1) φ∗ is a ring homomorphism
(2) φ∗ is the identity map on constants.

Moreover, if Φ : K[W ] → K[V ] is a ring homomorphism which is the identity
map on constants, then there is a map of varieties φ : V →W so that Φ = φ∗.

Thus, there is a bijective regular map Φ : V → W if and only if the coordinate
rings K[V ] and K[W ] are isomorphic.

Proof. See chapter 5 of Cox-Little-O’Shea. �

Definition 14.8. If V is an irreducible variety, so K[V ] is an integral domain, then
K(V ) is the field of fractions of K[V ]. In other words, K(V ) = frac(K[V ]).

See Definition 4.9 for defining the field of fractions.

Definition 14.9. A rational map from V ⊂ Km to W ⊂ Kn, written

φ : V −− →W,

is given by rational functions f1/g1, . . . , fm/gm ∈ K(V ). This gives an induced map
φ∗ : K(W )→ K(V ) which is the identity on K.

Remark 14.10. The rational map φ : V −− →W in Definition 14.9 is not defined
everywhere on V . In particular, it is not defined where the denominators g1, . . . , gm
vanish. More precisely, φ is defined on V \ V (g1, . . . , gm)

Remark 14.11. The homomorphism φ∗ : K(W ) → K(V ) is necessarily injective
since K(W ) is a field.

Definition 14.12. Affine varieties V and W are birational if there are rational
maps φ : V −− → W and ψ : W −− → V satisfying that φ ◦ ψ is the identity on
V and ψ ◦ φ is the identity on W (wherever these compositions are defined).

Theorem 14.13. Two affine varieties V,W are birational if and only if there is
an isomorphism between K(V ) and K(W ) which is the identity on K.

Proof. See Theorem 10 in chapter 5, section 5 of Cox-Little-O’Shea. �
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15. Affine Hilbert Function

Define the K-vector space

K[x1, . . . , xn]≤t := {f ∈ K[x1, . . . , xn] | deg(f) ≤ t}.
This is a finite dimensional vector space has a natural basis consisting of monomials
of degree at most t.

Now suppose I ⊂ K[x1, . . . , xn] is an ideal. Define

I≤t = {f ∈ I | deg(f) ≤ t}.
This is also a K-vector space, and I≤t ⊂ K[x1, . . . , xn]≤t.

Definition 15.1. Let R = K[x1, . . . , xn]. The affine Hilbert function of R is
HF aR(t) is defined as

HF aR(t) = dimKR≤t.

The affine Hilbert function of I is

HF aI (t) = dimK I≤t

The affine Hilbert function of R/I is

HF aR/I(t) = dimK(R≤t/I≤t) = HF aR(t)−HF aI (t).

Theorem 15.2 (Macaulay). Let I be an ideal in R = K[x1, . . . , xn]. Let > be a
graded monomial order. Then

HF aR/I(t) = HF aR/LT>(I).

Remark 15.3. Recall a graded monomial order begins by comparing monomials
with the weight vector given by all ones.

Example 15.4. Consider the ideal I = 〈x2y2, x4, y3〉. Then the monomials xrys

in I are in bijection with lattice points (r, s) ∈ N2 satisfying r ≥ 2, s ≥ 2 or r ≥ 4
or s ≥ 3. Drawing a picture, we can verify the following table:

t 0 1 2 3 4 5 6

HF aR/I(t) 1 3 6 9 10 10 10

Theorem 15.5. Let I be an ideal in R = K[x1, . . . , xn]. There is a polynomial
HP aR/I(t) in t satisfying that HF aR/I(t) = HP aR/I(t) for t� 0.

Proof. By Theorem 15.2, this only needs to be proved if I is a monomial ideal. In
Chapter 9, Section 2 of Cox-Little-O’Shea it is shown that the Hilbert polynomial
of R/I, where I is a monomial ideal, is a sum of binomial coefficients of the form

HP aR/I(t) =

d∑
i=0

ai

(
t

d− i

)
�

The following examples give a geometric idea for why Theorem 15.5 is true.

Example 15.6. Consider the ideal I = 〈xy2, x3, y4〉. Then the monomials xrys in
I are in bijection with lattice points (r, s) ∈ N2 satisfying r ≥ 1, s ≥ 2 or r ≥ 3 or
s ≥ 4. Drawing a picture, we can verify the following table:

t 0 1 2 3 4 5 6

HF aR/I(t) 1 3 6 8 8 8 8
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We see the affine Hilbert polynomial is HP aR/I(t) = 8 (a constant polynomial).

Example 15.7. Consider the ideal I = 〈x2y2, x3, xy4〉. Then the monomials xrys

in I are in bijection with lattice points (r, s) ∈ N2 satisfying r ≥ 2, s ≥ 2 or r ≥ 3
or r ≥ 1, s ≥ 4. Drawing a picture, we can verify the following table:

t 0 1 2 3 4 5 6

HF aR/I(t) 1 3 6 9 11 12 13

We see the affine Hilbert polynomial is HP aR/I(t) = t+ 7 (a linear polynomial).

Definition 15.8. Given an ideal I ⊂ K[x1, . . . , xn], the dimension of an affine
variety V (I) is the degree of the polynomial HP aR/I(t).

Proposition 15.9. If I ⊂ K[x1, . . . , xn] = R is an ideal, then HP a(R/I)(t) and

HP a(R/
√
I)(t) have the same degree.

Proof. See Chapter 9, Section 3 of Cox-Little-O’Shea. �

Definition 15.10. A coordinate subspace of Kn is a subspace spanned by some of
the standard basis vectors of Kn.

Proposition 15.11. Given an ideal I ⊂ K[x1, . . . , xn] = R, the dimension of V (I)

is the dimension of the largest coordinate subspace contained in V (
√

LT>(I)) for
any term order > on R.

Proof. See Chapter 9, Section 3 of Cox-Little-O’Shea. �

Example 15.12. Consider the ideal I = 〈x2− y, x3− z〉 ⊂ K[x, y, z] which defines
the twisted cubic in K3.

In GRevLex order, LTGRevLex(I) = 〈x2, xy, y2〉. Notice that
√

LTGRevLex(I) =
〈x, y〉. The largest coordinate subspace in V (x, y) is spanned by non-zero multi-
ples of the z-coordinate. This has dimension one, so the twisted cubic V (I) has
dimension one.

In GLex order, LTGLex(I) = 〈xz, xy, x2, y3〉. Then
√
LTGLex(I) = 〈x, y〉 so we

get the same answer.
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