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Overview

I A few comments on ideals

I Continued Fractions

I LLL
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Ideals with generators in Q[x0, . . . , xn]

Call an ideal Q-generated if the ideal has a set of generators in
Q[x0, . . . , xn].

If I is Q-generated, what can we say about various ideals
associated to I?
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If J is Q-generated then I : J is Q-generated.

The saturation, radical, Q-projections, singular locus of I are all
Q-generated.

If the associated primes of the radical of I are partitioned into sets
S1, . . . ,Sp based on their Hilbert function then the intersection of
the prime ideals in Si is Q-generated.

Punchline: In many cases, most of the irreducible components of
a Q-generated ideal are either Q-generated or are Q(α)-generated
for a ”small” field extension.

Numerical Approximations: sometimes close is good enough



Numerical approximations of generic points

Let V (I ) ⊂ Cn be the variety defined by I

Let J be an associated prime of
√
I

Given points almost on V (J), can we recover J?
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Why consider such a problem?

Homotopy continuation is a tool in algebraic geometry that utilizes
numerical algorithms.

It produces numerical data instead of exact data.

The goal is to recover the exactness that is lost in a numerical
algorithm but keep its computational advantages.
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Homotopy Continuation:

In homotopy continuation, a polynomial ideal, I , is cast as a
member of a parameterized family of polynomial ideals one of
which has known isolated solutions.

Each of the known isolated solutions is tracked, using a
predictor/corrector method, to a point which lies numerically close
to the algebraic set V (I ) determined by I .

The basic algorithms of numerical algebraic geometry can be
parallelized.
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What will be assumed:

Let V1,V2, . . . ,Vr denote the irreducible components of V (I ). The
algorithms of numerical algebraic geometry can be used to produce
sets of points S1, S2, . . . ,Sr such that

I The points in Si lie within any prescribed tolerance of Vi .

I The points in Si approximate generic points on Vi .

I The number of points in Si can be increased.

I Points in Si can be ”sharpened” to be arbitrarily close to Vi .

I Each Vi is labelled with its dimension and degree.
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Basic Varieties

The simplest algebraic varieties are individual points.

A more general class of simple varieties are linear spaces.

The equations defining a linear space are linear polynomials.

What can we say about a linear space from points on or nearly on
the linear space?
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Some Questions:

Question 1: If you know enough points on a linear space, what can
you say about the linear space?

Question 2: If you know enough points almost on a linear space,
what can you say about the linear space?

Question 3: If a linear space is spanned by vectors with integer
entries, does the answer to question 2 change?
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Question 1 can be solved with basic linear algebra.

You can exactly determine the linear space.

Question 2 can be partially answered with tools from advanced
linear algebra (Singular Value Decomposition).

You can determine the dimension of the linear space and
can get a very good approximation for the space.

Question 3 is what we would like to answer.

But first, let’s go to a seemingly unrelated topic:
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Continued Fractions

A continued fraction will be taken to mean an expression of the
form:

a0 +
1

a1 +
1

a2 +
1

a3 +
1

. . .

where a0 ∈ Z and ai ∈ N for i > 0.
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Sometimes this is written in the form [a0; a1, a2, a3, . . . ].

For instance [4; 3, 7, 2, . . . ] = 4 +
1

3 +
1

7 +
1

2 +
1

. . .

.
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Algorithm for continued fraction expansion

For α ∈ R, let bαc = greatest integer less than or equal to α.

Algorithm:
Given α ∈ R
Set a0 = bαc, b0 = α− a0, i = 0

While bi 6= 0
ai+1 = b 1bi c
bi+1 = 1

bi
− b 1bi c

Set i → i + 1

Output: α = [a0; a1, a2, . . . ]
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Example

Let α = 18
7

a0 = b187 c = 2 18
7 − 2 = 4

7

a1 = b74c = 1 7
4 − 1 = 3

4

a2 = b43c = 1 4
3 − 1 = 1

3

a3 = b3c = 3 3− 3 = 0 STOP

18
7 = [2; 1, 1, 3]
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So 18
7 = [2; 1, 1, 3] = 2 +

1

1 +
1

1 +
1

3

Note that 18
7 is also equal to [2; 1, 1, 2, 1].

I.e. 18
7 = 2 +

1

1 +
1

1 +
1

2 +
1

1
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Remarks

1) Irrational numbers are in 1-1 correspondence with infinite
continued fractions [a0; a1, a2, a3, . . . ].

2) Rational numbers can be expressed in exactly two ways as a
finite continued fraction.

For example, we saw that 18
7 = [2; 1, 1, 3] = [2; 1, 1, 2, 1].
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Convergents

Given a continued fraction expansion α = [a0; a1, a2, a3, . . . ], the
nth convergent is the rational number [a0; a1, a2, . . . , an] = hn

kn
.

So we obtain a sequence of convergents:
[a0], [a0; a1], [a0; a1, a2], [a0; a1, a2, a3], . . .

For example, the convergents to [2; 3, 4, 5, 6] are
[2], [2; 3], [2; 3, 4], [2; 3, 4, 5], [2; 3, 4, 5, 6].

This gives a sequence of fractions 2, 7
3 ,

30
13 ,

157
68 ,

972
421 .

The decimal approximations:
2, 2.333333, 2.307692, 2.308824, 2.308789
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The sequence of convergents of α = [a0; a1, a2, . . . ] converge to α.

If the nth convergent of α is hn
kn

, then a theorem states that

1

kn(kn+1 + kn)
< |α− hn

kn
| < 1

knkn+1
.

A corollary is that a convergent is nearer to α than any other
fraction whose denominator is less than that of the convergent.

The rate at which a sequence of convergents approaches a number
is exponential.
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For instance,

π = [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, . . . ]

and its first few convergents are

3,
22

7
,

333

106
,

355

113
,

103993

33102
, . . .

No fraction with denominator less than 33102 gets closer to π than
the 4th convergent

103993

33102
= 3.14159265...
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Remarks

1) We can encode any infinite sequence of positive integers
a0, a1, a2, . . . as an irrational number α = [a0; a1, a2, . . . ].

2) We can encode any finite sequence of positive integers
a0, a1, a2, . . . , ak as a rational number α = [a0; a1, a2, . . . , ak , 1].
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3) Other encodings are possible. For example, we could map a
binary string to a string of 2′s and 3′s:

011010110→ 233232332→ [0, 2, 3, 3, 2, 3, 2, 3, 3, 2, 1, 1]

=
11479

26446
∼= .434054299326930...

In this example, we use 0 as a start signal and 1,1 as a stop signal.
In decoding, an error has occurred if we see a strange number.

.434054289326930→ [0; 2, 3, 3, 2, 3, 2, 3, 3, 7, 6, ...]

.434054299326930→ [0; 2, 3, 3, 2, 3, 2, 3, 3, 2, 1, 1, 4101181, 1, 4, 2, ...]
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Gauss-Kuzmin Distribution

Let r be a random real number with continued fraction expansion
[a0; a1, a2, a3, . . . ]. For large n,

Pr(an = k) = − log2[1− 1

(k + 1)2
]

and

Pr(an ≤ k) = 1− log2[
k + 2

k + 1
]

and

Pr(an > k) = log2[
k + 2

k + 1
]
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Big numbers are rare

The formulas show that

Pr(αn > 1, 000) ≈ 1
693

Pr(αn > 10, 000) ≈ 1
6930

Pr(αn > 1, 000, 000) ≈ 1
693000

Punchline: If you see a big number in a continued fraction, it
typically is a signal
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Example: Recovery of a rational number from an
approximation

97
184 = [0; 1, 1, 8, 1, 2, 3] = [0; 1, 1, 8, 1, 2, 2, 1]

97
184 = .5271739130434782608695652...

.5271739130 = [0; 1, 1, 8, 1, 2, 2, 1, 679347, 8]

.527173913043478 = [0; 1, 1, 8, 1, 2, 2, 1, 113224637680, 2, 5, 2]

.527173913043479 = [0; 1, 1, 8, 1, 2, 3, 39961636828, 2, 5, 2]
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Example:

23571113
17192329 = [1; 2, 1, 2, 3, 1, 1, 3, 1, 44, 1, 1326]

= [1; 2, 1, 2, 3, 1, 1, 3, 1, 44, 1, 1325, 1]

= 1.371025007722921077185063175559 . . .

1.371025007722921077185063175559 =
[1; 2, 1, 2, 3, 1, 1, 3, 1, 44, 1, 1326, 11838880999240702, 4, 8, . . . ]

1.371025007722921077185063175560 =
[1; 2, 1, 2, 3, 1, 1, 3, 1, 44, 1, 1325, 1, 4736895443828648, 4, 1, . . . ]
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Example:

45319752357111317192327293157593522194531975235711131719232729315759352219
74637293741434753596167717356473829678673486763478638686028646777669234698
=
.60719983382720295087632786577265646041215021866228538733814
879542761385188993419108163755088940441307669546158300005376
817720291470336058204791784414488405550661773438312683163999
489001125687085510741 ...

[0, 1, 1, 1, 1, 4, 1, 21, 1, 1, 3, 2, 1, 15, 2, 16, 6, 1, 1, 2, 1, 26, 2,
14, 2, 1, 1, 89, 20, 1, 4, 27, 3, 1, 2, 1, 1, 4, 3, 2, 5, 199, 3, 2, 303,
5, 1, 2, 3, 4, 1, 2, 2, 6, 2, 1, 2, 1, 11, 2, 1, 8, 3, 6, 3, 9, 1, 1, 2, 7,
1, 3, 12, 2, 2, 1, 8, 1, 65, 1, 4, 1, 1, 1, 1, 2, 12, 3, 1, 2, 262, 2, 25,
1, 2, 1, 1, 6, 1, 26, 7, 2, 1, 1, 6, 2, 1, 1, 1, 1, 2, 1, 1, 1, 6, 7, 1, 6,
1, 1, 2, 2, 2, 2, 1, 3, 22, 13, 93, 1, 2, 3, 1, 1, 1, 8, 1, 4, 1, 2, 2,
66032953034693062523149765344722098382166979057478086, 7,
1, 1, 4, ...]
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Now let’s work our way back to ideals.

Consider a line spanned by a vector with rational coordinates.

Given the first 13 digits of a random point on the line, we will use
continued fractions to recover the line.
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Example: Recovery of a line from a generic point
Consider the line, L, spanned by the vector < 117 223 97 >

Here is an approximation for a generic point on L:
(367.5663404700058, 700.5751617505238, 304.7344873982099)

Dividing by the first term we get the point:
(1, 700.5751617505238367.5663404700058 ,

304.7344873982099
367.5663404700058) = (1, α, β)

We find that α = [1; 1, 9, 1, 1, 1, 3, 4273504273504]
and β = [0; 1, 4, 1, 5, 1, 1, 1, 1221001221000, 1, 1, 3]

We find [1; 1, 9, 1, 1, 1, 3] = 223
117 and [0; 1, 4, 1, 5, 1, 1, 1] = 97

117

Thus (1, α, β) ≈ (1, 223117 ,
97
117)
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Four key facts about RREF

1) If B ∈ Qa×b then RREF (B) ∈ Qa×b

2) Let F be any field containing Q. If A ∈ GLF(a) then
RREF (AB) = RREF (B)

3) If B has a basis with entries from Q then the null space of B
has a basis with entries from Q

4) Small perturbations of B lead to small perturbations of
RREF(B) (on the big cell)
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Example:

Consider the twisted cubic in R3. The ideal of the twisted cubic
has three linearly independent quadrics.

Consider the matrix M ∈ RBig×3 whose rows consist of random
points on the twisted cubic.

What is the rank of M?

The 2-Veronese map of the rows of M gives a matrix N ∈ RBig×10.
What is the rank of N?

The null space of N corresponds to the three quadric generators.
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Why is this useful?

Let I = (f1, . . . , fk) be an ideal where f1, . . . , fk ∈ Q[x0, . . . , x9].
Let J1 be the ideal of a twisted cubic in R9. Suppose I = J1 ∩ J2.

Finding J1 using only Grobner basis techniques can be difficult.

However, confirming that I ⊂ J1 is a cheap computation.

Punchline: Using Grobner bases, we can prove that our ”guess” is
correct.

Numerical Approximations: sometimes close is good enough



Almost orthogonality in the plane

If |α− hn
kn
| is small then we can write this as

α ≈ hn
kn

or as
αkn − hn ≈ 0.

This can be thought of as saying

[α 1] · [kn − hn] ≈ 0.
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From the continued fraction expansion of a real number α there is
an algorithm for finding all best rational approximations for α.

Consequence: Given a vector v ∈ R2 and an ε > 0 there is an
algorithm for finding a “smallest vector” w ∈ Z2 such that
v · w < ε.

Thus, given a vector v ∈ R2, we have a method for finding vectors
in Z2 which are almost orthogonal to v and are “small”.
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Almost Orthogonality in general

Let v be a vector in Cn and let ε > 0.

Let F (v , ε) = min{|w |
∣∣ w ∈ Zn and |w · v | < ε}

Problem: Find F (v , ε) and a w that realizes this minimum.
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Lattices

Let B = {b1, b2, . . . , bm} be a set of linearly independent vectors.

Let L be the lattice formed as the Z-span of the elements of B.

In other words: L = Zb1 + Zb2 + · · ·+ Zbm

Two sets of vectors generate the same lattice if and only if they
are related by a unimodular integer transformation.
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LLL Algorithm

The LLL algorithm starts with a basis B for a lattice L then uses a
Gram-Schmidt type process to attempt to produce an orthogonal
basis for the lattice.

In polynomial time it produces an almost orthogonal basis, B ′,
called an LLL-reduced basis for L together with bounds C1,C2, ...
such that:

The first basis vector, b′1, is no more than C1 times as long as the
shortest vector in the lattice.

The second basis vector, b′2, is within C2 of the shortest vector
independent of b′1, etc.
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Note: An LLL-reduced basis is the basis output by the LLL
algorithm.

Due to properties of an LLL-reduced basis, short vectors in the
lattice typically appear among the elements of the reduced basis.

In particular, the bounds C1 can lead to proofs that there are no
integer relations up to a certain size.
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How to use LLL to find almost orthogonal integral vectors

Starting with a vector v ∈ Cn, we pick an M that is “large”.

A basis for a lattice L ∈ Cn+1 is built by stacking an n × n identity
matrix on Mv .

Applying the LLL algorithm to this lattice gives us the information
needed to build w such that |w · v | is small.
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Example: Let r = (7 +
√

5)/2.

The minimal polynomial of r is 11− 7x + x2.

This implies that [11, −7, 1] · [1, r , r2] = 0.

With M large, we use the lattice generated by the columns of the
matrix 

1 0 0
0 1 0
0 0 1
M Mr Mr2
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continued

The small lattice vector found by the LLL algorithm is:
11
−7
1

M(11− 7r + r2)


Remember that 11− 7r + r2 = 0 so this vector is pretty small.

If we use an approximation s for r then M(11− 7s + s2) will also
be small.

In other words, it is enough to use a numerical approximation for r !
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Summary:
Given a vector v ∈ Cn and an ε > 0, there is a polynomial time
algorithm for producing short vectors w ∈ Zn such that |w · v | < ε.

The w that is produced is within a known multiple of the shortest
possible integral vector.

If v is a random vector and if ε is very small, then the expected
value for |w | is large.

When |w | is much smaller than the expected value for a random
vector, then this provides evidence that v is not random.
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Application: Minimal polynomials

Problem: Find the minimal polynomial of an algebraic number
r ∈ C.

Solution: Form successively the vectors vt = [1 r r2 . . . r t ] (for
larger and larger values of t) and see if there exist small vectors in
the associated lattices.
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Example: Let s = 1.38583026 ... 77183810 be the first fifty digits
of r =

√
7− 3
√

2. We use s to find the minimal polynomial of r .

If we apply the LLL algorithm to v = [1 s s2 s3 s4 s5] we
obtain a vector, w , which is almost orthogonal to v but whose
entries are 9 digit numbers. Increasing s to 100 digits, we obtain a
w whose entries are 17 digit numbers.

These are not small vectors! This suggests the minimal polynomial
has degree greater than 5.
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continued

Now let s be the first 50 digits of r and apply the LLL algorithm to
the vector [1, s, . . . , s6]. We obtain

w = [−339, 84, 147, 4,−21, 0, 1].

Increasing s to 100 digits leads to the same w .

This suggests the minimal polynomial has degree 6 and is equal to

P(x) = −339 + 84x + 147x2 + 4x3 − 21x4 + x6.

Through an exact computation, we can check the answer.
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Application 2: Factoring over Z[x ]

Problem 1: Factor F ∈ Z[x ] as a product of irreducibles in Z[x ].

Solution: Find a root r of F then find its minimal polynomial.
Pull off this factor of F and repeat.
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Application 3: Generic point on a hyperplane

Problem: Let L = c0 + c1x1 + c2x2 + · · ·+ cnxn ∈ Z[x1, . . . , xn].
Given a generic point p = (p1, p2, . . . , pn) ∈ V (L) ⊂ Cn, find V (L).

Partial Solution: Note that
p ∈ V (L) ⇐⇒ [c0 c1 c2 . . . cn] · [1 p1 p2 . . . pn] = 0.

Pick ε then apply the LLL algorithm to the vector
v = [1 p1 p2 . . . pn] to find a vector w with v ·w < ε. If v ·w = 0
then you can use w to make L.

If v · w 6= 0 then you know p is not a generic point on any
L ∈ Z[x1, . . . , xn] with coefficients less than G (ε) (G is known).
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Application 4: Generic point on a hypersurface

Problem: Let F = a + bx + cy + dx2 + exy + fy2 ∈ Z[x , y ]. Given
a generic point (p, q) ∈ V (F ) ⊂ Cn, find V (F ).

Solution: Note that
p ∈ V (F ) ⇐⇒ [a b c d e f ] · [1 p q p2 pq q2] = 0.
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Secant example

Let V be the the 2-uple embedding of P2 into P5 given by the map
[a : b : c]→ [a2 : ab : ac : b2 : bc : c2].

It is very easy to produce a generic point, P, on the secant variety
of V . Applying the LLL algorithm to the 3-uple embedding of P
we obtain the polynomial

C 2D + AE 2 + B2F − ADF − 2BCE .

This is the generator of the principal ideal corresponding to the
secant variety of the Veronese variety. It is the determinant of a
generic 3× 3 symmetric matrix.
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Why is this useful?

Mixed with RREF and generic point sampling, one can find
equations for components over number fields.

Mixed with RREF and generic point sampling, one can determine
the number field needed to carry out a primary decomposition.

One can, theoretically, test if a set of complex numbers, c1, . . . , ck
are Q-linearly independent

Exact equations for a variety can, theoretically, be recovered from
knowing a numerical approximation for a single generic point on
the variety.
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