Problem Set 3

Many of these problems are taken from the 4th edition of Cox-Little-O'Shea.

1. Consider the matrix $M = \begin{bmatrix} 1 & x & x^2 \\ x+1 & x^2+2 & x+y \end{bmatrix}$. Find the row reduced echelon form of M using Grobner basis commands in Macaulay2 (there is a script on the course website called 'Two ways to implement row reduced echelon form' indicating how this can be done). Do this for the fields below:

$$F = \mathbb{Q}(x, y), F = \operatorname{frac}\left(\frac{\mathbb{Q}[x, y]}{\langle y^2 - x^3 - x - 1 \rangle}\right), \text{ and } F = \operatorname{frac}\left(\frac{\mathbb{F}_7[x, y]}{\langle y^2 - x^3 - x - 1 \rangle}\right).$$

Recall if R is an integral domain then $\mathbf{frac}(R)$ denotes the field of fractions of R. The command "frac" in Macaulay2 will define fraction fields.

- 2. Use the division algorithm to divide $f = x^7y^2 + x^3y^2 y + 1$ by the ordered list $L = (xy^2 x, x y^3)$, first using Graded Lex order (GLex in Macaulay2) and then using Lex order. Then switch the order of the two polynomials in L and repeat. For the computations in Lex order you may wish to use Macaulay2 there is a script posted on the course website called 'Implementing polynomial division' which has a function for the division algorithm. Feel free to use it, but do at least one computation by hand to understand the algorithm.
- 3. In this problem we study the division of $f = x^3 x^2y x^2z + x$ by $f_1 = x^2y z$, $f_2 = xy 1$.
 - (a) Using Graded Lex order, compute r_1 = remainder of f on division by (f_1, f_2) and r_2 = remainder of f on division by (f_2, f_1) . (the results will be different!)
 - (b) Is $r = r_1 r_2$ in the ideal generated by f_1 and f_2 ?
 - (c) Compute the remainder of r on division by (f_1, f_2) .
 - (d) Does the division algorithm give a solution to the ideal membership problem? In other words, if the remainder of a polynomial f on division by (f_1, f_2) is non-zero, does it mean that f is not in the ideal generated by f_1 and f_2 ?
 - (e) Let $I = \langle f_1, f_2 \rangle$. Show that the ideal $\langle LT_{GLex}(f_1), LT_{GLex}(f_2) \rangle$ is not equal to the ideal $LT_{GLex}(I) = \langle LT_{GLex}(f) | f \in I \rangle$.
 - (f) Show that $I = \langle x z, yz 1 \rangle$ and guess what $LT_{GLex}(I)$ might be (after tomorrow you will be able to prove your guess).
- 4. Let $V \subset \mathbb{R}^3$ be parametrized by $x = t, y = t^3, z = t^4$. In the previous exercise set you showed that $I(V) = \langle y - x^3, z - x^4 \rangle$. The crucial step is to show that any polynomial vanishing on V can be written as $h_1(y - x^3) + h_2(z - x^4)$. You will now prove this using the division algorithm.
 - (a) Use the division algorithm to prove that any polynomial $f \in \mathbb{K}[x, y, z]$ can be written as

$$f = h_1(y - x^3) + h_2(z - x^4) + r,$$

where r is a polynomial involving x only. Take care with what monomial order you choose!

- (b) Use (a) to prove that $I(V) = \langle y x^3, z x^4 \rangle$, where V is the variety parametrized by $x = t, y = t^3, z = t^4$.
- (c) Extend your results in (a) and (b) to find the ideal I(V), where V is parametrized by $x = t, y = t^n, z = t^m$ (n, m are positive integers).
- 5. Consider the polynomial ring $\mathbb{C}[x, y]$ in two variables. Recall that we can regard this as an infinite dimensional vector space over \mathbb{C} with basis $1, x, y, x^2, xy, y^2, \ldots$ Let $I = \langle x^2, y^2 \rangle$.
 - (a) Explain why $\mathbb{C}[x, y]/I$ is a vector space over \mathbb{C} .
 - (b) Show that, as a vector space over \mathbb{C} , $\mathbb{C}[x, y]/I$ has a basis consisting of the monomials $B = \{1, x, y, xy\}$.
 - (c) Let F = axy + bx + cy + d be an element of $\mathbb{C}[x, y]/I$, where $a, b, c, d \in \mathbb{C}$. Then multiplication by F induces a map of \mathbb{C} -vector spaces $L_F : \mathbb{C}[x, y]/I \to \mathbb{C}[x, y]/I$. Find the matrix M_B for L_F with respect to the basis B.
 - (d) Show that if d = 0 then the matrix M_B from part (b) is nilpotent (that is, show that $M_B^k = 0$ for some integer k > 1).
 - (e) If you are familiar with Jordan canonical form, find the Jordan canonical form of M_B if F = xy + x + y.
- 6. Repeat parts (b) and (c) of problem 5 with $I = \langle x^2 + 2xy, y^2 \rangle$ (the basis B will be the same).
- 7. In the text, an ideal $I \subset \mathbb{K}[x_1, \ldots, x_n]$ is called a monomial ideal if $I = \langle x^{\alpha} | \alpha \in A \rangle$ for some (possibly infinite) set $A \subset \mathbb{N}^n$. (Dickson's lemma shows that we can always take A to be a finite set.) Prove that $I \subset \mathbb{K}[x_1, \ldots, x_n]$ is a monomial ideal if and only if the following condition is satisfied: for any $f \in \mathbb{K}[x_1, \ldots, x_n]$, $f \in I$ if and only if every monomial of f is in I.
- 8. Suppose $I \subset \mathbb{K}[x_1, \ldots, x_n]$ is any ideal.
 - (a) Explain why $\mathbb{K}[x_1, \dots, x_n]/I$ is a \mathbb{K} -vector space.
 - (b) If I is a monomial ideal, describe a (possibly infinite) basis for $\mathbb{K}[x_1, \ldots, x_n]/I$, and prove that your answer is correct. (Hint: look back at problem 5 part (b)).
- 9. Let $I = \langle x^2 + 2xy + 3y^2, x^2 + 6y^2, x^2 + xy + y^2 \rangle$. We will consider the coefficients of I as coming from two different fields.
 - (a) Show that $I \subset \mathbb{F}_{11}[x, y]$ is a monomial ideal.
 - (b) Show that $I \subset \mathbb{F}_7[x, y]$ is not a monomial ideal.