
Problem Set 5
Many of these problems are taken from the 4th edition of Cox-Little-O'Shea.

1. (There was a typo on this problem in the last worksheet) GRevLex is not always
better than Lex, but it often is. Use Macaulay2 to compute Gröbner bases for
I = 〈x5 + y4 + z3 − 1, x3 + y3 + z2 − 1〉 with respect to GRevLex, with respect
to Lex, and with respect to the monomial order de�ned by the weight vectors
[1, 0, 0], [1, 1, 1], [1, 1, 0]. Compare your results.

2. If α is an element of the �eld Q(
√
2,
√
3), then α = a + b

√
2 + c

√
3 + d

√
6. Find

the minimal polynomial of α in Macaulay2 as follows:

• De�ne R = Q[a, b, c, d, x, y, t]

• De�ne I = 〈x2 − 2, y2 − 3, t− (a+ bx+ cy + dxy)〉
• Eliminate x and y from I. (use the command 'eliminate(I,{x,y})' to do this
e�ciently)

Your result should be a polynomial in t with coe�cients which are polynomials in
a, b, c, d.

3. (4-bar linkage) In Figure 1 a 4-bar linkage is shown with lengths assigned to the
edges (these are called bars). The points (0, 0) and (5, 0) are �xed, but the bars
are allowed to turn at the joints where they are attached. The coupler curve of the
linkage is the curve traced out by the point with coordinates (s, t) as the linkage
moves. Check out the following website for some nice visualizations of coupler
curves of 4-bar linkages: https://saltire.com/HTML5/Mechanisms/linkages.html.

In this problem you will use Macaulay2 to �nd the implicit equation of the coupler
curve for the 4-bar linkage with lengths indicated in Figure 1. Do this as follows:

• Set up a polynomial ring in the six variables corresponding to the coordinates
of the three movable joints, as in Figure 1.

• Set up an ideal containing expressions corresponding to bar lengths.

• Eliminate all variables except s and t (you should get a single polynomial)

Once you get the equation in s and t, open up a Sage worksheet in CoCalc and
plot the curve in R2 de�ned by this equation. Here are the Sage commands you
will need: Suppose your polynomial in s and t is 3s + 5t. In Sage, the command
�F (s, t) = 3s+ 5t� de�nes a function, and the command
�implicit_plot(F(s,t),(s,a,b),(t,c,d))� plots the curve de�ned by F (s, t) = 0 over the
window a ≤ s ≤ b, c ≤ t ≤ d.

4. (Lagrange multipliers) In this problem you will use both symbolic and numerical
methods to explore the critical points of g(x, y) = x3 +3xyz− 2z2 restricted to the
sphere de�ned by x2 + y2 + z2 = 1. Lagrange multipliers yields the equations

x2 + y2 + z2 = 1
3x2 + 3yz = 2λx

3xz = 2λy
3xy − 4z = 2λz

for the critical points of g restricted to the sphere.
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Figure 1: 4-bar linkage for problem 3

(a) Let S = Q[x, y, z, λ] (feel free to use a di�erent variable than λ). Use Macaulay2
to �nd a Gröbner basis for the ideal I ⊂ S de�ned by these equations and �nd
the dimension of S/I as a vector space.

(b) Load the Numerical Algebraic Geometry package in Macaulay2 using the com-
mand: loadPackage �NumericalAlgebraicGeometry�

Now use the command `solveSystem' from the Numerical Algebraic Geometry
package to �nd all the solutions of this system of equations over C. Compare
the number of solutions to the dimension of S/I as a vector space that you
found in (a). Then use the command `realPoints' to �nd the real solutions of
this system of equations.

5. (Singular Locus) Suppose f ∈ K[x, y] de�nes a curve C = V (f) ⊂ K2. The singular
locus of C consists of those points on C where a tangent line is not well-de�ned.
These are places where f vanishes and both of its derivatives vanish. In other words
the singular locus is Xsing = V (f, ∂f

∂x
, ∂f
∂y
). If Xsing = ∅, then V (f) is smooth.

(a) If f = y2 − x(x− 1)(x− 3), verify that the curve C = V (f) is smooth. Hint:
show that 1 ∈ 〈f, ∂f

∂x
, ∂f
∂y
〉. Plot the curve C in Sage on CoCalc and verify that

it looks smooth.

(b) If f = x4 + 2x3y − x2y2 + 2xy3 − 2y4 − 4x3 − 4xy2 + 4y3 + 2x2 + 2xy − 2y2,
�nd the singular locus of V (f). Do this in Macaulay2 by de�ning the ideal
I = 〈f, ∂f

∂x
, ∂f
∂y
〉. (The command `di�(x,f)' takes the derivative of f with respect

to x.) Then �nd a Gröbner basis of I (use the command `gens gb I') and solve
these equations by hand. Plot the curve f = 0 in Sage on CoCalc to see that
your answer makes sense. Make sure that your viewing window includes the
singular locus.

6. (Implicitization) The Enneper surface in R3 is parametrized by

x = 3u+ 3uv2 − u3
y = 3v + 3u2v − v3
z = 3u2 − 3v2

(a) De�ne an appropriate ideal and use elimination to obtain the equation of this
surface in the variables x, y, z.
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(b) Use Sage to plot this surface in two ways: using �implicit_plot3d� with the
equation you found in (a) and using �parametric_plot3d� with the parametriza-
tion given above.

(c) (optional) The di�erence between the two plots in (a) and (b) is partially
explained by the complicated singular locus of the Enneper surface (notice
from the two plots that Sage has trouble on `implicit_plot3d' near the singular
locus). Let f be the polynomial you found in (a). In Macaulay2, de�ne the
ideal I = 〈f, ∂f

∂x
, ∂f
∂y
, ∂f
∂z
〉. As we saw in Problem 5, the variety of this ideal

de�nes the singular locus of V (f). The command `decompose(I)' in Macaulay2
�pulls apart� the singular locus into its components (we'll learn more about
this when we learn about primary decomposition). See if you can match at
least some of the output of this command with what you see in part (b).

7. (Ring homomorphisms) Suppose φ : K[w1, . . . , wm]→ K[x1, . . . , xn] is a ring homo-
morphism de�ned by φ(wi) = fi for some polynomials f1, . . . , fn ∈ K[x1, . . . , xn].
Let S = K[x1, . . . , xn, w1, . . . , wm] and de�ne the ideal I = 〈wi− fi〉 ⊂ S. Let > be
an n-elimination order on S (i.e. a monomial order satisfying that any monomial
involving the xi variables is bigger than any monomial which involves only the wj

variables) and let G be a Gröbner basis for I under >. Suppose f ∈ K[x1, . . . , xn]
and R is the remainder of f on division by G.

(a) If f ∈ im(φ), prove that R ∈ K[w1, . . . , wm], φ(R) = f , and R is the minimal
polynomial in K[w1, . . . , wm] under > satisfying these properties.

(b) Prove that f ∈ im(φ) if and only if R ∈ K[w1, . . . , wm].

(c) If φ(wi) is a monomial for i = 1, . . . ,m, prove the following:

i. Every polynomial in G is a di�erence of monomials.

ii. If f is a monomial, its remainder R on division by G is also a monomial.

8. (Ring homomorphisms, continued) Consider the ring map φ : K[w1, w2, w3] →
K[x, y] de�ned by φ(w1) = x2y5, φ(w2) = x7y2, and φ(w3) = x3y3.

(a) Using the previous problem, use Macaulay2 to verify that x200y200 is in the im-
age of φ and �nd an explicit monomial m = wa

1w
b
2w

c
3 so that φ(m) = x200y200.

You can do this as follows: use the command
`R=QQ[x,y,w_1,w_2,w_3,MonomialOrder=>{Weights=>{1,1,0,0,0}}]'
to de�ne a Bayer-Stillman elimination order on R (Macaulay2 will automat-
ically break ties using GRevLex). Then de�ne the ideal I as in problem 7
and set m = x200y200. Then use the command `m%I' to get the remainder of
m on division by a Gröbner basis of I using the monomial order you de�ned
(Macaulay2 will automotically compute the Gröbner basis for I with respect
to the chosen monomial order when you type in `%').

(b) Repeat (a) with the monomial order on K[x, y, w1, w2, w3] de�ned by �rst using
the weight vector [1, 1, 0, 0, 0], then the weight vector [0, 0, 0, 1, 0], and then
breaking ties with GRevLex. You can do this with the command
`R=QQ[x,y,w_1,w_2,w_3,MonomialOrder=>
{Weights=>{1,1,0,0,0},Weights=>{0,0,0,1,0}}]'
Conclude that there are at least two monomials which map to x200y200 under
the ring homomorphism φ.
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