
Problem Set 6
Many of these problems are taken from the 4th edition of Cox-Little-O'Shea.

1. (Implicitization) Use the method discussed in class to get a polynomial equation for
the trigonometric rose with polar equation r = cos(n

d
θ) for (n, d) = (3, 2), (1, 4), (2, 7),

and (7, 4). Use Sage to plot your result.

2. For each of the polynomials f that you obtained in Problem 1, de�ne the ideal
I = 〈f, ∂f

∂x
, ∂f
∂y
〉. The number of singular points of V (f) can be computed as the

vector space dimension of Q[x, y]/
√
I. In Macaulay2 this can be computed using

the commands 'degree radical I'. See if you can get the same number by counting
the singular points in the plots you obtained in Problem 1.

3. Find the implicit equation f of the rose de�ned by r = cos(1
2
d). Now choose a point

(a, b) ∈ R2 (pick integer coordinates) and let D be the squared distance function
from (a, b), i.e. D = (x − a)2 + (y − b)2. Set up the system of equations coming
from Lagrange multipliers whose solutions are the critical points of D on V (f).
Count the number of critical points of D on V (f) by using the `degree' command
in Macaulay2 as follows:

(a) De�ne the ideal J associated to the system of equations you got from Lagrange
multipliers.

(b) Eliminate the variable associated to the multiplier λ from J . Call the resulting
ideal I.

(c) Use the command `degree radical I' to compute the number of critical points
c of D restricted to V (f).

(d) Do you expect the singular points of f to be critical points? Let s be the
number of singular points of V (f) which are also critical points and compute
the number c− s.

(e) Try computing c − s for di�erent points (a, b). Do you get the same thing?
This number is related to the Euclidean distance degree.
See https://arxiv.org/pdf/1309.0049.pdf for more.

4. (Primary ideal basics)

(a) Show that the radical of a primary ideal is a prime ideal. If I is primary and√
I = p, we say I is p-primary.

(b) Show that if I and J are p-primary then I ∩ J is p-primary.

5. (Radical ideal basics)

(a) Show that if I is a radical ideal and if J is any ideal then I : J is a radical
ideal.

(b) Show that
√
I : J∞ =

√
I : J

(c) Show that
√
IJ =

√
I ∩ J

(d) A monomial is squarefree if it is not divisible by the square of any variable.
Show that a monomial ideal is radical ⇐⇒ the minimal generators of I are
squarefree.
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(e) Show that if I ⊆
√
J then there exists an m such that Im ⊆ J

6. (Exploring primary decomposition, computationally) Carry out the steps below for
the two ideals:

• I = 〈x3, xy2, xz2〉
• I = 〈xyz, x2z, xy2, x2y, x3〉.

(a) Use the command `primaryDecomposition' to get a primary decomposition of
I. Check the answer that Macaulay2 gives you: verify that each of the ideals is
primary and that they intersect to give I. The Macaulay2 command `intersect'
can be useful here.

(b) Use the command `associatedPrimes' to get the associated primes of I.

(c) The minimal primes of I are the associated primes of I that are minimal with
respect to inclusion. Use the command `minimalPrimes' to get the minimal
primes of I. Verify that these are the associated primes of the radical I.

(d) It is a theorem that the associated primes of an ideal I are the maximal
proper ideals of the form I : f , where f runs across all polynomials. For each
of the associated primes P in part (b), see if you can �nd an element f in the
polynomial ring Q[x, y, z] so that I : f = P . In Macaulay2, if I is an ideal and
f is a polynomial, then I : f is computed literally by typing `I:f'.

7. (Weak Nullstellensatz and maximal ideals) Consider the following two statements
in the polynomial ring K[x1, . . . , xn] over an algebraically closed �eld K.

(a) (Weak Nullstellensatz) V (I) 6= ∅ ⇔ I = K[x1, . . . , xn].

(b) Every maximal ideal I ⊆ K[x1, . . . , xn] has the form I = 〈x1−a1, . . . , xn−an〉
for some a1, . . . , an ∈ K.

In class we showed 7a⇒7b. Prove that 7b⇒7a. In other words, prove that the
description of maximal ideals in 7b is equivalent to the weak Nullstellensatz.

8. (Exploring maximal ideals) Suppose f1(x), . . . , fn(x) ∈ K[x]. In the polynomial
ring K[x1, . . . , xn] (where K is any �eld), consider the ideal

I = 〈f1(x1), x2 − f2(x1), . . . , xn − fn(x1)〉

(a) Show that every f ∈ K[x1, . . . , xn] can be written uniquely as f = q+ r where
q ∈ I and r ∈ K[x1] with either r = 0 or deg(r) < deg(f1). Hint: use Lex
order with x1 the smallest variable (instead of the largest).

(b) Use part (a) to prove that K[x1, . . . , xn]/I ∼= K[x]/〈f1(x)〉.
(c) Prove that the following are equivalent:

i. I is prime.

ii. I is maximal.

iii. f1(x) is irreducible.

(d) Prove that I is radical if and only if f1(x) is squarefree.
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Remark 1. It can be shown that every maximal ideal in the polynomial ring

K[x1, . . . , xn] has the form of the ideal I in Problem 8 for some polynomial f1(x)
which is irreducible over K.

9. (Squarefree lead term ideals) There is a general philosophy that good properties
of an ideal I cannot be gained when passing to the lead term ideal 〈LT(I)〉, only
lost. In this problem you will prove one instance of this philosophy. Suppose
I ⊂ K[x1, . . . , xn] is an ideal and G = {g1, . . . , gr} is a Gröbner basis for I satisfying
that LT(gi) is squarefree for i = 1, . . . , r.

(a) If f ∈
√
I, prove that LT(f) is divisible by LT(gi) for some gi ∈ G. Hint:

f r ∈ I for some r.

(b) Prove that I is radical. Hint: show that G is a Gröbner basis for
√
I.

(c) From (a) and (b), conclude that if 〈LT(I)〉 is radical, then I is radical.

(d) Find an example to show that if I is radical, it is not necessarily true that
〈LT(I)〉 is radical.

10. (Prime ideal basics)

(a) Show that an ideal P is prime if and only if for any two ideals I, J , IJ ⊆ P ⇒
I ⊆ P or J ⊆ P .

(b) Show that if I1, . . . , Ik are ideals and P is prime, then ∩k
i=1Ii ⊆ P if and only

if Ij ⊆ P for some j.

(c) (Prime avoidance) If P1, . . . , Pk are prime ideals and I ⊆ ∪ki=1Pi then I ⊆ Pj

for some j. Hint: use induction on k.

11. (Optional: Integer linear programming using Gröbner bases) If you are interested

in the ideas behind this problem you should consult Chapter 8, Section 1 of Us-

ing Algebraic Geometry by Cox, Little, and O'Shea. This problem builds on

problems 7 and 8 from Problem Set 5.

The central problem of integer linear programming is to minimize a linear function
`(A1, . . . , An) = c1A1 + · · ·+ cnAn subject to a system of constraint equations:

a11A1 + a12A2 + · · ·+ a1nAn = b1
a21A1 + a22A2 + · · ·+ a2nAn = b2

...
...

am1A1 + an2A2 + · · ·+ amnAn = bm

,

where A1, . . . , An ∈ Z≥0. The feasible region is the set of tuples (A1, . . . , An) ∈ Rn
≥0

satisfying the constraint equations.

For simplicity, we will restrict to the case aij ≥ 0 and bi ≥ 0 for 1 ≤ i ≤
m, 1 ≤ j ≤ n. De�ne the map of polynomial rings φ : K[w1, . . . , wn]→ K[z1, . . . , zm]
by φ(wj) =

∏m
i=1 z

aij
i .

Let S = K[z1, . . . , zm, w1, . . . , wn] and de�ne the monomial order <` on S as fol-
lows: �rst, compare monomials using the vector [1, . . . , 1, 0, . . . , 0] which has 1 in
the �rst m entries and 0 in the last n entries, then break ties using the vector
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[0, . . . , 0, c1, . . . , cm] which has 0 in the �rst n entries, then �nally break remain-
ing ties using GRevLex order. (This is a slight adjustment of a Bayer-Stillman
`-elimination order). The order <` is called an adapted order for the linear pro-
gramming problem.

(a) Prove that (A1, . . . , An) ∈ Z≥0 is in the feasible region if and only if

φ(wA1
1 wA2

2 · · ·wAn
n ) = zb11 z

b2
2 · · · zbmm

Conclude that the integer points of the feasible region are in 1-1 correspondence
with monomials that map to zb11 · · · zbmm under φ.

(b) De�ne the ideal I = 〈wi−φ(wi) | i = 1, . . . , n〉 and let G be a Gröbner basis for
I with the adapted monomial order <` from above. Prove that the remainder
R of zb11 . . . zbmm under division by the Gröbner basis G gives a solution to
the linear programming problem above (namely, minimize ` over non-negative
integers subject to the constraint equations above).

(c) Consider the integer programming problem: minimize

`(A1, A2) = A1 + 2A2 + 3A3

subject to
2A1 + 3A2 + 3A3 = 300
5A1 + A2 + 3A3 = 300,

with A1, A2, A3 ∈ Z≥0. Solve this problem in Macaulay2 using Gröbner bases
as indicated in (b). Do you get di�erent answers if you change the objective
function `(A1, A2)? You may want to refer to Problem 8 on Problem Set 5 for
useful Macaulay2 commands.

(d) The linear programming problem in (c) is small enough to solve by hand using
a bit of linear algebra. See if you can get the same answer that you obtained
in (b).

(e) Now use Macaulay2 to minimize

`(A,B,C,D) = 2A+ 3B + C + 5D

subject to
3A+ 2B + C +D = 10

4A+B + C = 5,

with A,B,C,D ∈ Z≥0. Then change the right hand sides of the equations to
20 and 14 and redo the computation. (This problem comes from Section 8.1
of Using Algebraic Geometry).

12. (Open-ended problem) Suppose f is the equation of a trigonometric rose from Prob-
lem 1. Can you describe the singular points of V (f) in terms of the parameters
n, d? What about the associated primes of

√
I where I = 〈f, ∂f

∂x
, ∂f
∂y
〉 over Q? What

about the associated primes of I over Q? Explore using Macaulay2!

13. (Open-ended problem) If f is a polynomial in three variables, describe a way to
compute the critical points of f restricted to the sphere x2 + y2 + z2 = 1.
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