Problem Set 7

One of these problems is taken from the 4th edition of Cox-Little-O'Shea.

1. Let $I=\left\langle x^{3}-x, y^{3}-5 y^{2}+6 y, x(y-3 x-3)(2 x+y-1)\right\rangle \subset R=\mathbb{Q}[x, y]$. With the monomial order GLex with $x>y>z$, use Macaulay2 to find bases of $(R / I)_{\leq 0},(R / I)_{\leq 1},(R / I)_{\leq 2}$, and $(R / I)_{\leq 3}$. By appealing to a 'staircase diagram' for monomials, find the affine Hilbert function of R / I. What is the affine Hilbert polynomial of R / I ? What is the dimension of R / I ?
2. Find the affine Hilbert function $H F_{R / I}^{a}(t)$ for $t=0,1,2,3$ for the choices of R and I listed below. Use a graded order of your choice (the default GRevLex order is great).
(a) $R=\mathbb{Q}[x, y], I=\left\langle x^{3} y, x y^{2}\right\rangle$
(b) $R=\mathbb{Q}[x, y, z], I=\left\langle x^{3}-y z^{2}, y^{4}-x^{2} y z\right\rangle$
(c) $R=\mathbb{Q}[x, y, z, w], I=\left\langle x^{2}-y w, y^{3}-x z, y w-x w, y z^{2}+x w\right\rangle$

Recall that $\operatorname{dim}(R / I)$ is the degree of the affine Hilbert Polynomial $H P_{R / I}^{a}(d)$. In each of (a),(b),(c) above, print enough values of the affine Hilbert function to observe the rate of growth of the Hilbert polynomial. Use this to determine $\operatorname{dim}(R / I)$ for each of these ideals. (Recall that taking successive differences in a sequence with polynomial growth reveals the degree of the polynomial.)

Once you are finished, feel free to start working on the assigned Macaulay2 projects.

