SUPPLEMENTARY COMPUTATIONS FOR INEQUALITIES FOR FREE MULTI-BRAID ARRANGEMENTS SUBMITTED TO PROCEEDINGS OF THE JAPAN ACADEMY SERIES A

In this note we provide details for a straightforward but tedious computation involved in the proof of Proposition 5.5 in Inequalities for Free Multi-Braid Arrangements, submitted to the Proceedings of the Japan Academy, Series A. For completeness, we recall the notation from that paper.

- $S = \mathbb{K}[x_0, \dots, x_\ell]$, where \mathbb{K} has characteristic zero
- H_{ij} is the hyperplane defined by $x_i x_j = 0$
- $A_{\ell} = \bigcup_{0 \le i \le j \le \ell} H_{ij}$ denotes the braid arrangement of rank ℓ
- $K_{\ell+1}$ denotes the complete graph on vertices $\{v_0, \ldots, v_\ell\}$; the edge $\{v_i, v_j\}$ in $K_{\ell+1}$ corresponds to the hyperplane $V(x_i - x_j)$ in A_{ℓ} .
- $\mathbf{m}: A_{\ell} \to \mathbb{Z}_{>0}$ denotes a map associating to each hyperplane in \mathcal{A}_{ℓ} (equivalently each edge in $K_{\ell+1}$) a positive integer. We write m_{ij} for $\mathbf{m}(H_{ij})$.
- We denote by Λ^b_{ℓ} the *balanced cone* of multiplicities on A_{ℓ} ; this is the set of multiplicities $\mathbf{m} \in \mathbb{N}^{\binom{\ell+1}{2}}$ satisfying $m_{ij} \leq m_{ik} + m_{jk} + 1$ for every triple of distinct integers i, j, k between 0 and ℓ .
- Given $\mathbf{m} \in \Lambda^b_{\ell}$, we call \mathbf{m} an ANN multiplicity if there are non-negative integers n_0, \ldots, n_ℓ and $\epsilon_{ij} \in \{-1, 0, 1\}$ for every $0 \le i < j \le \ell$ so that $m_{ij} = n_i + n_j + \epsilon_{ij}$ for every $0 \le i < j \le \ell$.
- $C = \{\{v_i, v_j\}, \{v_j, v_s\}, \{v_s, v_t\}, \{v_i, v_t\}\}$ represents a four-cycle in $K_{\ell+1}$ and $\mathbf{m}(C)$ denotes the quantity $|m_{ij} - m_{js} + m_{st} - m_{it}|$
- Given $U \subset \{v_0, \ldots, v_\ell\}$ with $|U| \ge 4$:
 - \mathbf{m}_U is the restriction of \mathbf{m} to those hyperplanes H_{ij} with $\{v_i, v_j\} \subset U$.

 - For a four-cycle C, we write $C \subset U$ if all vertices of C are in U. $\mathrm{DV}(\mathbf{m}_U) := \sum_{C \subset U} \mathbf{m}(C)^2$, where the sum is over all four-cycles $C \subset U$.
 - $-q_U$ denotes the number of odd three-cycles of **m** contained in U; that is q_U is the number of subsets $\{i, j, k\} \subset U$ so that $m_{ij} + m_{ik} + m_{jk}$ is odd.

We now present the notion of signed-eliminable graphs from [3, 1]. Let G be a signed graph on $\ell + 1$ vertices. That is, each edge of G is assigned either a + or a -, and so the edge set E_G decomposes as a disjoint union $E_G = E_G^+ \cup E_G^-$. Define

$$m_G(ij) = \begin{cases} 1 & \{i,j\} \in E_G^+\\ -1 & \{i,j\} \in E_G^-\\ 0 & \text{otherwise.} \end{cases}$$

The graph G is signed-eliminable with signed-elimination ordering $\nu : V(G) \rightarrow$ $\{0,\ldots,\ell\}$ if ν is bijective and, for every three vertices $v_i, v_j, v_k \in V(G)$ with $\nu(v_i), \nu(v_j) < \nu(v_k)$, the induced sub-graph $G|_{v_i, v_j, v_k}$ satisfies the following conditions.

- For $\sigma \in \{+, -\}$, if $\{v_i, v_k\}$ and $\{v_j, v_k\}$ are edges in E_G^{σ} then $\{v_i, v_j\} \in E_G^{\sigma}$ For $\sigma \in \{+, -\}$, if $\{v_k, v_i\} \in E_G^{\sigma}$ and $\{v_i, v_j\} \in E_G^{-\sigma}$ then $\{v_k, v_j\} \in E_G$

FIGURE 1. σ -mountain (at left) and σ -hill (at right)

TABLE 1. Graphs on four vertices which are *not* signed-eliminable

These two conditions generalize the notion of a graph possessing an elimination ordering, which is equivalent to the graph being chordal. A graph is chordal if and only if it has no induced sub-graph which is a cycle of length at least four. In [3], Nuida establishes a similar characterization for signed-eliminable graphs, to which we now turn.

- **Definition 0.1.** (1) A graph with $(\ell + 1)$ vertices v_0, v_1, \ldots, v_ℓ with $\ell \geq 3$ is a σ -mountain, where $\sigma \in \{+, -\}$, if $\{v_0, v_i\} \in E_G^{\sigma}$ for $i = 2, \ldots, \ell - 1$, $\{v_i, v_{i+1}\} \in E_G^{-\sigma}$ for $i = 1, \ldots, \ell - 1$, and no other pair of vertices is joined by an edge. (See Figure 1 - edges of sign σ are denoted by a single edge and edges of sign $-\sigma$ are denoted by a doubled edge.)
 - (2) A graph with $(\ell + 1)$ vertices $v_0, v_1, v_2, \ldots, v_\ell$ with $\ell \geq 3$ is a σ -hill, where $\sigma \in \{+, -\}, \text{ if } \{v_0, v_1\} \in E_G^{\sigma}, \{v_0, v_i\} \in E_G^{\sigma} \text{ for } i = 2, \ldots, \ell 1, \{v_1, v_i\} \in E_G^{\sigma}$ for $i = 3, \ldots, \ell, \{v_i, v_{i+1}\} \in E_G^{-\sigma}$ for $i = 2, \ldots, \ell 1$, and no other pair of vertices is connected by an edge. (See Figure 1.)
 - (3) A graph with $(\ell+1)$ vertices v_0, \ldots, v_ℓ with $\ell \ge 2$ is a σ -cycle if $\{v_i, v_{i+1}\} \in E_G^{\sigma}$ for $i = 0, \ldots, \ell 1$, $\{v_0, v_\ell\} \in E_G^{\sigma}$, and no other pair of vertices is connected by an edge.

Theorem 0.2. [3, Theorem 5.1] Let G be a signed graph. Then G is signedeliminable if and only if the following three conditions are satisfied.

- (C1) Both G_+ and G_- are chordal.
- (C2) Every induced sub-graph on four vertices is signed eliminable.
- (C3) No induced sub-graph of G is a σ -mountain or a σ -hill.

All signed-eliminable graphs on four vertices are listed (with an elimination ordering) in [1, Example 2.1], along with those which are not signed-eliminable. For use in the proof of Corollary 0.3, we also list those graphs which are not signedeliminable in Table 1. The property of being signed-eliminable is preserved under interchanging + and -. Consequently, we list these graphs in Table 1 up to automorphism with the convention that a single edge takes one of the signs +, -, while a double edge takes the other sign. **Corollary 0.3.** Let G be a signed graph. Then G is signed-eliminable if and only if the following three conditions are satisfied.

- (C1') No induced sub-graph of G is a σ -cycle of length > 3.
- (C2) Every induced sub-graph on four vertices is signed eliminable.
- (C3) No induced sub-graph of G is a σ -mountain or a σ -hill.

Proof. Clearly (C1) from Theorem 0.2 implies (C1'). We show that (C1') and (C2)imply condition (C1). Assume for contradiction that $E_G^{\sigma}, \sigma \in \{-,+\}$, is a cycle of length $\ell + 1 > 3$ and $V_G = \{v_0, ..., v_\ell\}$ where $\{v_i, v_{i+1}\} \in E_G^{\sigma}$ for $i = 0, ..., \ell - 1$ and $\{v_0, v_\ell\} \in E_G^{\sigma}$. If $E_G^{-\sigma} = \emptyset$ then G is a σ -cycle which is forbidden by (C1'), so we assume $E_G^{-\sigma} \neq \emptyset$. Let *m* be the maximal integer so that there is a sequence of consecutive vertices $v_i, v_{i+1} \dots, v_{i+m-1}$ so that the induced sub-graph on these consecutive vertices consists only of edges in E_G^{σ} . Since $E_G^{-\sigma} \neq \emptyset$, $m < \ell + 1$. Relabel the vertices so that v_0, \ldots, v_{m-1} are the vertices of a maximal induced sub-graph with edges only in E_G^{σ} . If m = 2 or m = 3, then the induced sub-graph on v_0, v_1, v_2, v_3 consists of the three σ edges $\{v_0, v_1\}, \{v_1, v_2\}, \{v_2, v_3\}$ along with at least one $-\sigma$ edge. No such graph is signed eliminable (see Table 1). So $m \ge 4$. Now consider the induced sub-graph H on $v_0, v_1, \ldots, v_{m-1}, v_m$. By definition of m, H has exactly one $-\sigma$ edge, namely $\{v_0, v_m\}$. But then the induced sub-graph on v_0, v_1, v_{m-1}, v_m consists of the two σ edges $\{v_0, v_1\}, \{v_{m-1}, v_m\}$ and the $-\sigma$ edge $\{v_0, v_m\}$, which is not signed-eliminable. It follows that E_G^{σ} cannot have a cycle of length > 3, so E_G^{σ} is chordal. \square

The following is Proposition 5.5 in 'Inequalities for Free Multi-Braid Arrangements.' We give a number of tables which makes the somewhat tedious computations clearer.

Proposition 0.4. Suppose n_0, \ldots, n_ℓ are non-negative integers, G is a signed graph on v_0, \ldots, v_ℓ , and let \mathbf{m} be the multiplicity on A_ℓ given by $m_{ij} = n_i + n_j + m_G(ij)$. If G is not signed-eliminable, then there is a subset $U \subset \{0, \ldots, \ell\}$ so that $DV(\mathbf{m}_U) > q_U \cdot (|U| - 1)$.

Proof. Notice that, for a four-cycle traversing i, j, s, t in order,

$$\mathbf{m}(C) = |m_{ij} - m_{js} + m_{st} - m_{it}| = |m_G(ij) - m_G(js) + m_G(st) - m_G(it)|.$$

Furthermore, for a three-cycle $\{i, j, k\}$,

$$m_{ij} + m_{ik} + m_{jk} = 2(n_i + n_j + n_k) + m_G(ij) + m_G(ik) + m_G(jk).$$

It follows that the values of $DV(\mathbf{m}_U) = \sum_{C \subset U} \mathbf{m}(C)^2$ and $q_U = \#$ odd three cycles of **m** in U may be determined after replacing m_{ij} by $m_G(ij)$, which takes values only in $\{-1, 0, 1\}$. Hereafter we write DV(G) for $DV(\mathbf{m})$ and q_G for q to emphasize their dependence only on the signed graph G. If $U \subset \{v_0, \ldots, v_\ell\}$, we let $DV(G_U)$ represent $DV(\mathbf{m}_U)$ to emphasize dependence only on G and the subset U.

Now, if G is not signed eliminable then by Corollary 0.3 G contains an induced sub-graph H which is

- a signed graph on four vertices which is not signed-eliminable,
- a σ -cycle of length > 3,
- a σ -hill,
- or a σ -mountain.

We assume G = H and show that $DV(G) > q_G \ell$ in each of these cases, where ℓ is one less than the number of vertices of G. The inequality $DV(G) > 3q_G$ can easily be verified by hand for each of the twelve graphs on four vertices which are not signed-eliminable (see Table 1); this is also done in [2, Corollary 6.2]. If G is a σ -cycle, σ -mountain, or σ -hill on $(\ell + 1)$ vertices we will show that DV(G) and q_G are given by the formulas:

(1)
$$DV(G) = \ell^3 - 2\ell^2 - \ell + 2$$

(2)
$$q_G = \ell^2 - 2\ell - 3.$$

Given these formulas, note that $DV(G) = q\ell + 2(\ell + 1) > q\ell$, thus proving the result. We prove Equations (1) and (2) for the σ -cycle directly, relying on the two additional formulas:

(3)
$$DV(G) = \sum_{U \subset V_G, |U|=4} DV(G_U)$$

(4)
$$q_G = (\sum_{U \subset V_G, |U|=4} q_U)/(\ell - 2).$$

Equation (3) follows since each four-cycle is contained in a unique induced subgraph on four vertices and Equation (4) follows since each three-cycle appears in $(\ell - 2)$ sub-graphs on four vertices. Using these equations, it suffices to identify all possible types of induced sub-graphs of the σ -cycle on four vertices, how many of each type there are, and compute $DV(G_U)$ and q_U for each of these. Then we use Equation (3) to compute DV(G) and Equation (4) to compute q_G .

The list of all possible induced sub-graphs with four vertices of a σ -cycle on $(\ell + 1)$ vertices are listed in Table 2. The number of sub-graphs of each type is listed in the second column, while the third and fourth columns record q_U and $DV(G_U)$, respectively, for each type of sub-graph. The final row records the total number of sub-graphs on four vertices, the number of odd three-cycles, and the deviation of \mathbf{m} , $DV(\mathbf{m}) = \sum_C \mathbf{m}(C)^2$. We find that $DV(\mathbf{m}) = \ell^3 - 2\ell^2 - \ell + 2$ and $q = \ell^2 - 2\ell - 3$, proving Equations (1) and (2) for the σ -cycle.

The same computations can be done to prove Equations (1) and (2) for the σ -mountain and σ -hill; the corresponding tables are Table 3 and Table 4, respectively. Due to their length we give each table its own page (or two pages).

Type of sub-graph	Count	q_U	$\mathrm{DV}(G_U)$
•••	$\binom{\ell-4}{2} + \binom{\ell-3}{2}$	0	0
••	$(\ell+1)\binom{\ell-4}{2}$	2	2
••	$\frac{(\ell+1)(\ell-4)}{2}$	4	8
	$(\ell+1)(\ell-4)$	2	2
	$\ell + 1$	2	6
Total	$\binom{\ell+1}{4}$	$q = \ell^2 - 2\ell - 3$	$\mathrm{DV} = \ell^3 - 2\ell^2 - \ell + 2$

 $\sigma\text{-cycle}$ of length $(\ell+1)$

Table 2: Computing $\mathrm{DV}(G)$ where G is a $\sigma\text{-cycle}$

Type of subgraph	Count	q_U	$\mathrm{DV}(G_U)$
•••	$\binom{\ell-3}{4}$	0	0
• •	$3\binom{\ell-3}{3}$	2	2
	$2\binom{\ell-3}{2}$	2	2
••	$2\ell - 9 + \binom{\ell - 5}{2}$	4	8
•	$(\ell-3)$	2	6
••	$\ell-4$	2	2
	2	2	6
	$2\binom{\ell-4}{2}$	2	2
	$2(\ell-4)$	4	8
•	$2(\ell-4)$	2	2
	2	2	6

 $\sigma\text{-mountain on }(\ell+1)$ vertices

	$\binom{\ell-4}{3}$	0	0
	$2\binom{\ell-4}{2}$	2	2
	$\ell-4$	2	2
Total	$\binom{\ell+1}{4}$	$q_G = \ell^2 - 2\ell - 3$	$\mathrm{DV} = \ell^3 - 2\ell^2 - \ell + 2$

Table 3: Computing $\mathrm{DV}(G)$ where G is a $\sigma\text{-mountain}$

Type of subgraph	Count	q_U	$\mathrm{DV}(G_U)$
•••	$\binom{\ell-4}{4}$	0	0
• •	$3\binom{\ell-4}{3}$	2	2
	$2\binom{\ell-4}{2}$	2	2
••	$2\ell - 11 + \binom{\ell - 6}{2}$	4	8
	$\ell-4$	2	6
	$2\binom{\ell-4}{2}$	2	2
	$2(\ell-4)$	4	8
	$2(\ell-4)$	2	2
	2	2	6
	$2\binom{\ell-4}{3}$	0	0
	$4\binom{\ell-4}{2}$	2	2

 σ -hill on $(\ell + 1)$ vertices

	$2(\ell-4)$	2	2
	1	2	6
$\mathbf{\mathbf{k}}$	$2(\ell-4)$	2	2
	2	2	6
	$\binom{\ell-4}{2}$	2	2
	$\ell - 4$	4	8
Total	$\binom{\ell+1}{4}$	$q_G = \ell^2 - 2\ell - 3$	$DV = \ell^3 - 2\ell^2 - \ell + 2$

Table 4: Computing DV(G) where G is a σ -hill

References

- Takuro Abe, Koji Nuida, and Yasuhide Numata. Signed-eliminable graphs and free multiplicities on the braid arrangement. J. Lond. Math. Soc. (2), 80(1):121–134, 2009.
- [2] M. DiPasquale, C. A. Francisco, J. Mermin, and J. Schweig. Free and Non-free Multiplicities on the A₃ Arrangement. ArXiv e-prints, September 2016.
- Koji Nuida. A characterization of signed graphs with generalized perfect elimination orderings. Discrete Math., 310(4):819–831, 2010.